863
Views
14
CrossRef citations to date
0
Altmetric
Review

Polycaprolactone: a biodegradable polymer with its application in the field of self-assembly study

&
Pages 111-129 | Received 18 Jul 2020, Accepted 18 Sep 2020, Published online: 22 Oct 2020

References

  • Mosandl, A.; Guenther, C. Stereo Isomeric Flavour Compounds. 20. Structure and Properties of γ-Lactone Enantiomers. J. Agric. Food Chem. 1989, 37, 413–418. DOI: 10.1021/jf00086a031.
  • Parliament, T. H.; Nawar, W. W.; Fagerson, I. S. Delta-Caprolactone in Heated Milk Fat. J. Dairy Sci. 1965, 48, 615–616. DOI: 10.3168/jds.s0022-0302(65)88298-4.
  • Rocca, M. C.; Carr, G.; Lambert, A. B.; Macquerrie, D. J.; Clark, J. H. Process for the Oxidation of Cyclohexanone to ε-Caprolactone. US Pat.6,531,615 B2, March 11, 2003.
  • Jiménez-Sanchidrián, C.; Hidalgo, J. M.; Llamas, R.; Rafael, R. J. Baeyer-Villiger Oxidation of Cyclohexanone with Hydrogen Peroxide/Benzonitrile over Hydrotalcites as Catalysts. Appl. Catal. A-General 2006, 312, 86–94. DOI: 10.1016/j.apcata.2006.06.031.
  • Köpnick, H.; Schmidt, M.; Brügging, W.; Rüter, J.; Kaminsky, W. Polyesters, Ullmann’s Encyclopedia of Industrial; Wiley: Germany, 2000. DOI: 10.1002/14356007.a21_227.
  • Labet, M.; Thielemans, W. Synthesis of Polycaprolactone: A Review. Chem. Soc. Rev. 2009, 38, 3484–3504. DOI: 10.1039/b820162p.
  • Braud, C.; Devarieux, R.; Atlan, A.; Ducos, C.; Vert, M. Capillary Zone Electrophoresis in Normal or Reverse Polarity Separation Modes for the Analysis of Hydroxy Acid Oligomers in Neutral Phosphate Buffer. J. Chromatogr. B Biomed. Sci. Appl. 1998, 706, 73–82. DOI: 10.1016/S0378-4347(97)00468-4.
  • Kumar, A.; Gross, R. A. Candida Antarctica Lipase B Catalyzed Polycaprolactone Synthesis: Effects of Organic Media and Temperature. Biomacromolecules 2000, 1, 133–138. DOI: 10.1021/bm990510p.
  • Dong, H.; Wang, H-d.; Cao, S.–G.; Shen, J. C. Lipase-Catalyzed Polymerization of Lactones and Linear Hydroxyesters. Biotechnol. Lett. 1998, 20, 905–908. DOI: 10.1023/A:1005441707356.
  • Guo, K.; Chu, C. C. Synthesis and Characterization of Poly(ε-Caprolactone) Containing Amino Acid-Based Poly(Ether Ester Amide)s. J. Appl. Polym. Sci. 2012, 125, 812–819. DOI: 10.1002/app.35536.
  • Yoshida, Y.; Miyamoto, M.; Obuchi, S.; Ikeda, K.; Ohta, M. Preparation Process of Polyhydroxycarboxylic Acid. US Pat., 5,770,683, June 23, 1998.
  • Filachione, E. M.; Fisher, C. H. Condensation Products of Hydroxycarboxylic Acids. US Pat., 2396994, March 19, 1946.
  • Filachione, E. M.; Fisher, C. H. Process for the Manufacture of Esters of Hydroxy Carboxylic Acids. US Pat., 2447693, August 24, 1948.
  • Enomoto, K.; Ajioka, M.; Yamaguchi, A. Polyhydroxy Carboxylic Acid and Production Thereof. WO Pat., 9312160, June 24, 1993.
  • Cameron, R. E.; Moghaddam, A. K. Synthetic Bioresorbable Polymers. In Durability and Reliability of Medical Polymers, 1st ed.; Woodhead Publishing: Swaston, UK, 2012, Chapter 5; pp. 100. ISBN: 978-1-84569-929-1.
  • Stridsberg, K. M.; Ryner, M.; Albertsson, A. C. Controlled Ring-Opening Polymerization: Polymers with Designed Macromolecular Architecture. In: Degradable Aliphatic Polyesters. Springer, Berlin, Heidelberg. Adv. Polym. Sci. 2002, 157, 41–65. DOI: 10.1007/3-540-45734-8_2.
  • Ponsart, A.; Coudane, J.; Vert, M. A Novel Route to Poly(epsilon-caprolactone)-based Copolymers via Anionic Derivatization. Biomacromolecules 2000, 1, 275–281. DOI: 10.1021/bm005521t.
  • Albertsson, A. C.; Palmgren, R. Cationic Polymerization of 1,5- Dioxepan-2-One with Lewis Acids in Bulk and Solution. J. Macromol. Sci., A 1996, 33, 747–758. DOI: 10.1080/10601329608010891.
  • Dubois, P.; Coulembier, O.; Raquez, J. M. Handbook of Ring-Opening Polymerization; Wiley: Germany, 2009; pp. 53–63. ISBN: 978-3-527-31953-4. DOI: 10.1002/9783527628407.
  • Sisson, A. L.; Ekinci, D.; Lendlein, A. The Contemporary Role of ε-Caprolactone Chemistry to Create Advanced Polymer Architectures. Polymer 2013, 54, 4333–4350. DOI: 10.1016/j.polymer.2013.04.045.
  • Kurcok, P.; Penczek, J.; Franek, J.; Jedlinski, Z. Anionic Polymerization of Lactones. 14. Anionic Block Copolymerization of δ-Valerolactone and L-Lactide Initiated with Potassium Methoxide. Macromolecules 1992, 25, 2285–2289. DOI: 10.1021/ma00035a001.
  • Kricheldorf, H. R.; Boettcher, C. Polylactones 27. Anionic Polymerization of L-Lactide. Variation of Endgroups and Synthesis of Block Copolymers with Poly(Ethylene Oxide). Makromol. Chem., Macromol. Symp. 1993, 73, 47–64. DOI: 10.1002/masy.19930730107.
  • Guarino, V.; Gentile, G.; Sorrentino, L.; Ambrosio, L. Polycaprolactone: Synthesis, Properties and Applications. In Encyclopedia of Polymer Science and Technology; Wiley: United States, 2017. ISBN: 9780471440260, DOI: 10.1002/0471440264.pst658.
  • da Silva, L. G.; Leyva, M. E.; Barrak, E. R.; Barca, L. F.; Sachs, D.; de Queiroz, A. A. A. Synthesis of Poly(ε-Caprolactone) by Iodine: An Interesting Route to Synthesize Bioresorbable Polymers via Green Chemistry. Presented at the 11th Congresso Brasileiro de Polímeros, CBPol on Polymers, Campos do Jordão, SP, Oct 16–20, 2011; Paper 4129.
  • Baudry, D. B.; Brachais, L.; Cretu, A.; Gattin, R.; Loupy, A.; Stuerga, D. Synthesis of Polycaprolactone by Microwave Irradiation -an Interesting Route to Synthesize This Polymer via Green Chemistry. Environ. Chem. Lett 2003, 1, 19–23. DOI: 10.1007/s10311-002-0005-4.
  • Bhaw-Luximon, A.; Jhurry, D.; Motala-Timol, S.; Lochee, Y. Polymerization of ε-Caprolactone and Its Copolymerization with γ-Butyrolactone Using Metal Complexes. Macromol. Symp. 2006, 231, 60–68. DOI: 10.1002/masy.200551306.
  • Yuan, M.; Xiong, C.; Deng, X. Ring-Opening Polymerization of ε-Caprolactone Initiated by Cyclopentadienyl Sodium. J. Appl. Polym. Sci. 1998, 67, 1273–1276. DOI: 10.1002/(SICI)1097-4628(19980214)67:7%3C1273::AID-APP17%3E3.0.CO;2-2.
  • Mingotaud, A.-F.; Dargelas, F.; Cansell, F. Cationic and Anionic Ring-Opening Polymerization in Supercritical CO2. Macromol. Symp. 2000, 153, 77–86. DOI: 10.1002/1521-3900(200003)153:1%3C77::AID-MASY77%3E3.0.CO;2-D.
  • Yu, T.-L.; Wu, C. C.; Chen, C. C.; Huang, B. H.; Wu, J.; Lin, C.-C. Catalysts for the Ring-Opening Polymerization of ε-Caprolactone and L-Lactide and the Mechanistic Study. Polymer 2005, 46, 5909–5917. DOI: 10.1016/j.polymer.2005.04.079.
  • Rong, G.; Deng, M.; Deng, M.; Tang, Z.; Piao, L.; Chen, X.; Jing, X. Synthesis of Poly(epsilon-caprolactone)-b-Poly(gamma-benzyl-L-glutamic acid) Block Copolymer using Amino Organic Calcium Catalyst. Biomacromolecules 2003, 4, 1800–1804. DOI: 10.1021/bm034208z.
  • Tang, Z.; Chen, X.; Liang, Q.; Bian, X.; Yang, L.; Piao, L.; Jing, X. Strontium-Based Initiator System for Ring-Opening Polymerization of Cyclic Esters. J. Polym. Sci. A Polym. Chem. 2003, 41, 1934–1941. DOI: 10.1002/pola.10740.
  • Amgoune, A.; Lavanant, L.; Thomas, C. M.; Chi, Y.; Welter, R.; Dagorne, S.; Carpentier, J.-F. An Aluminium Complex Supported by a Fluorous Diamino-Dialkoxide Ligand for the Highly Productive Ring-Opening Polymerization of ε-Caprolactone. Organometallics 2005, 24, 6279–6282. DOI: 10.1021/om050512s.
  • Bratton, D.; Brown, M.; Howdle, S. M. Tin(II) Ethyl Hexanoate Catalyzed Precipitation Polymerization of ε-Caprolactone in Supercritical Carbon Dioxide. Macromolecules 2005, 38, 1190–1195. DOI: 10.1021/ma0484072.
  • Chmura, A. J.; Davidson, M. G.; Jones, M. D.; Lunn, M. D.; Mahon, M. F.; Johnson, A. F.; Khunkamchoo, P.; Roberts, S. L.; Wong, S. S. F. Group 4 Complexes with Aminebisphenolate Ligands and Their Application for the Ring-Opening Polymerization of Cyclic Esters. Macromolecules 2006, 39, 7250–7257. DOI: 10.1021/ma061028j.
  • Mahha, Y.; Atlamsani, A.; Blais, J.-C.; Tessier, M.; Bregeault, J.-M.; Salles, L. Oligomerization of ε-Caprolactone and δ-Valerolactone Using Heteropolyacid Initiators and Vanadium or Molybdenum Complexes. J. Mol. Catal. A Chem. 2005, 234, 63–73. DOI: 10.1016/j.molcata.2005.02.023.
  • O’Keefe, B. J.; Breyfogle, L. E.; Hillmyer, M. A.; Tolman, W. B. Mechanistic Comparison of Cyclic Ester Polymerizations by Novel Iron(III)-Alkoxide Complexes: Single vs Multiple Site Catalysis. J. Am. Chem. Soc. 2002, 124, 4384–4393. DOI: 10.1021/ja012689t.
  • Wang, Y.; Kunioka, M. Ring-Opening Polymerization of Cyclic Monomers with Aluminium Triflate. Macromol. Symp. 2005, 224, 193–205. DOI: 10.1002/masy.200550617.
  • Żółtowska, K.; Sobczak, M.; Olędzka, E. Novel Zinc-Catalytic Systems for Ring-Opening Polymerization of ε-Caprolactone. Molecules 2015, 20, 2816–2827. DOI: 10.3390/molecules20022816.
  • Dobrzynski, P. Mechanism of ε-Caprolactone Polymerization and ε-Caprolactone/Trimethylene Carbonate Copolymerization Carried out with Zr(Acac)4. Polymer 2007, 48, 2263–2279. DOI: 10.1016/j.polymer.2007.02.005.
  • Hsieh, K. C.; Lee, W. Y.; Hsueh, L.-F.; Lee, H. M.; Huang, J.-H. Synthesis and Characterization of Zirconium and Hafnium Aryloxide Compounds and Their Reactivity towards Lactide and ε-Caprolactone Polymerization. Eur. J. Inorg. Chem. 2006, 11, 2306–2312. DOI: 10.1002/ejic.200500679.
  • Nomura, N.; Taira, A.; Tomioka, T.; Okada, M. A Catalytic Approach for Cationic Living Polymerization: Sc(OTf)3-Catalyzed Ring-Opening Polymerization of Lactones. Macromolecules 2000, 33, 1497–1499. DOI: 10.1021/ma991580r.
  • Stevels, W. M.; Ankoné, M. J. K.; Dijkstra, P. J.; Feijen, J. A Versatile and Highly Efficient Catalyst System for the Preparation of Polyesters Based on Lanthanide Tris(2,6-di-Tert-Butylphenolate)s and Various Alcohols. Macromolecules 1996, 29, 3332–3333. DOI: 10.1021/ma951813o.
  • Nomura, N.; Taira, A.; Nakase, A.; Tomioka, T.; Okada, M. Ring-Opening Polymerization of Lactones by Rare-Earth Metal Triflates and by Their Reusable System in Ionic Liquids. Tetrahedron 2007, 63, 8478–8484. DOI: 10.1016/j.tet.2007.05.073.
  • Palard, I.; Schappacher, M.; Soum, A.; Guillaume, S. M. Ring-Opening Polymerization of ε-Caprolactone Initiated by Rare Earth Alkoxides and Borohydrides: A Comparative Study. Polym. Int. 2006, 55, 1132–1137. DOI: 10.1002/pi.1984.
  • Makiguchi, K.; Satoh, T.; Kakuchi, T. Diphenyl Phosphate as an Efficient Cationic Organocatalyst for Controlled/Living Ring-Opening Polymerization of δ-Valerolactone and ε-Caprolactone. Macromolecules 2011, 44, 1999–2005. DOI: 10.1021/ma200043x.
  • Dzienia, A.; Maksym, P.; Hachuła, B.; Tarnacka, M.; Biela, T.; Golba, S.; Zięba, A.; Chorążewski, M.; Kaminski, K.; Paluch, M. Studying the Catalytic Activity of DBU and TBD upon Water-Initiated ROP of ε-Caprolactone under Different Thermodynamic Conditions. Polym. Chem. 2019, 10, 6047–6061. DOI: 10.1039/C9PY01134J.
  • Wang, M.; Guo, L.; Sun, H. Manufacturing Technologies for Biomaterials. In Encyclopedia of Biomedical Engineering, 1st ed.; Elsevier: Amsterdam, Netherlands, 2019. ISBN: 978-0-12-805144-3.
  • Horie, K.; Barón, M.; Fox, R. B.; He, J.; Hess, M.; Kahovec, J.; Kitayama, T.; Kubisa, P.; Maréchal, E.; Mormann, W.; et al. Definitions of Terms Relating to Reactions of Polymers and to Functional Polymeric Materials. Pure Appl. Chem. 2004, 76, 889–906. DOI: 10.1351/pac200476040889.
  • Moad, G.; Solomon, D. H. The Chemistry of Radical Polymerisation, 2nd ed.; Elsevier: Amsterdam, Netherlands, 2006. ISBN: 9780080442860, 9780080913704.
  • Shrivastava, A. Introduction to Plastics Engineering: Polymerization, 1st ed. Elsevier: Amsterdam, Netherlands, 2018; pp. 17–48. ISBN: 978-0-323-39500-7.
  • Cheremisinoff, N. P. Condensed Encyclopedia of Polymer Engineering Terms. Elsevier: Amsterdam, Netherlands. ISBN: 978-0-08-050282-3. DOI: 10.1016/C2009-0-25687-X.
  • Azmi, M. A.; Shad, K. F. Role of Nanostructure Molecules in Enhancing the Bioavailability of Oral Drugs. Nanostruct. Novel Ther. 2017, 375–407. DOI: 10.1016/B978-0-323-46142-9.00014-1.
  • Postupalenko, V.; Einfalt, T.; Lomora, M.; Dinu, I. A.; Palivan, C. G. Bionanoreactors: From Confined Reaction Spaces to Artificial Organelles. Org. Nanoreactors 2016, 341–371. DOI: 10.1016/b978-0-12-801713-5.00011-2.
  • Pillai, C. K. S.; Sharma, P. C. Review Paper: Absorbable Polymeric Surgical Sutures: Chemistry, Production, Properties, Biodegradability, and Performance. J. Biomater. Appl. 2010, 25, 291–366. DOI: 10.1177/0885328210384890.
  • Mergaert, J.; Anderson, C.; Wouters, A.; Swings, J. Microbial Degradation of Poly(3-Hydroxybutyrate) and Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) in Compost. J. Environ. Polym. Degr. 1994, 2, 177–183. DOI: 10.1007/BF02067443.
  • Coulembier, O.; Degee, P.; Hedrick, J. L.; Dubois, P. From Controlled Ring-Opening Polymerization to Biodegradable Aliphatic Polyester: Especially Poly(β-Malic Acid) Derivatives. Prog. Polym. Sci. 2006, 31, 723–747. DOI: 10.1016/j.progpolymsci.2006.08.004.
  • Azimi, B.; Nourpanah, P.; Rabiee, M.; Arbab, S. Poly (ε-Caprolactone) Fiber: An Overview. J. Eng. Fiber Fabr. 2014, 9, 74–90. DOI: 10.1177/155892501400900309.
  • Dash, T. K.; Konkimalla, V. B. Poly-є-Caprolactone based Formulations for Drug Delivery and Tissue Engineering: A Review. J Control Release 2012, 158, 15–33. DOI: 10.1016/j.jconrel.2011.09.064.
  • Leja, K.; Lewandowicz, G. Polymer Biodegradation and Biodegradable Polymers-a Review. Pol. J. of Environ. Stud. 2010, 19, 255–266.
  • Nishida, H.; Tokiwa, Y. Distribution of Poly(p-Hydroxybutyrate) and Poly(ε-Caprolactone)Aerobic Degrading Microorganisms in Different Environments. J. Environ. Polym. Degr. 1993, 1, 227–233. DOI: 10.1007/BF01458031.
  • Benedict, C. V.; Cook, W. J.; Jarrett, P.; Cameron, J. A.; Huang, S. J.; Bell, J. P. Fungal Degradation of Polycaprolactones. J. Appl. Polym. Sci. 1983, 28, 327–334. DOI: 10.1002/app.1983.070280128.
  • Motiwalla, M. J.; Punyarthi, P. P.; Mehta, M. K.; D'Souza, J. S.; Kelkar-Mane, V. Studies on Degradation Efficiency of Polycaprolactone by a Naturally-Occurring Bacterium. J. Environ. Biol. 2013, 34, 43–49. PMID: 24006806.
  • Yavuz, H.; Babaç, C. Preparation and Biodegradation of Starch/Polycaprolactone Films. J. Polym. Environ. 2003, 11, 107–113. DOI: 10.1023/A:1024635130991.
  • Chen, D. R.; Bei, J. Z.; Wang, S. G. Polycaprolactone Microparticles and Their Biodegradation. Polym. Degrad. Stab. 2000, 67, 455–459. DOI: 10.1016/S0141-3910(99)00145-7.
  • Ginde, R. M.; Gupta, R. K. In Vitro Chemical Degradation of Poly(Glycolic Acid) Pellets and Fibers. J. Appl. Polym. Sci. 1987, 33, 2411–2429. DOI: 10.1002/app.1987.070330712.
  • Uhrich, K. E.; Cannizzaro, S. M.; Langer, R. S.; Shakesheff, K. M. Polymeric Systems for Controlled Drug Release. Chem. Rev. 1999, 99, 3181–3198. DOI: 10.1021/cr940351u.
  • Hutmacher, D. W. Scaffold Design and Fabrication Technologies for Engineering Tissues-State of the Art and Future Perspectives. J. Biomater. Sci. Polym. Ed. 2001, 12, 107–124. DOI: 10.1163/156856201744489.
  • Kumari, A.; Yadav, S. K.; Yadav, S. C. Biodegradable Polymeric Nanoparticles Based Drug Delivery Systems. Colloids Surf. B Biointerfaces 2009, 75, 1–18. DOI: 10.1016/j.colsurfb.2009.09.001.
  • Sinha, V. R.; Bansal, K.; Kaushik, R.; Kumria, R.; Trehan, A. Poly-epsilon-caprolactone microspheres and nanospheres: an overview. Int. J. Pharm. 2004, 278, 1–23. DOI: 10.1016/j.ijpharm.2004.01.044.
  • Singh, R.; Lillard, J. W. Jr., Nanoparticle-Based Targeted Drug Delivery. Exp. Mol. Pathol. 2009, 86, 215–223. DOI: 10.1016/j.yexmp.2008.12.004.
  • Wang, X.; Wang, Y.; Wei, K.; Zhao, N.; Zhang, S.; Chen, J. Drug Distribution within Poly(ε-Caprolactone) Microspheres and in Vitro Release. J. Mater. Process. Technol. 2009, 209, 348–354. DOI: 10.1016/j.jmatprotec.2008.02.004.
  • Albertsson, A.-C.; Gröning, M.; Hakkarainen, M. Emission of Volatiles from polymers-A New Approach for Understanding Polymer Degradation. J. Polym. Environ. 2006, 14, 9–13. DOI: 10.1007/s10924-005-8702-2.
  • Woodruff, M. A.; Hutmacher, D. W. The Return of a Forgotten Polymer-Polycaprolactone in the 21st Century. Prog. Polym. Sci. 2010, 35, 1217–1256. DOI: 10.1016/j.progpolymsci.2010.04.002.
  • Gaucher, G.; Dufresne, M.-H.; Sant, V. P.; Kang, N.; Maysinger, D.; Leroux, J.-C. Block Copolymer Micelles: preparation, Characterization and Application in Drug Delivery. J Control Release 2005, 109, 169–188. DOI: 10.1016/j.jconrel.2005.09.034.
  • Mandal, P.; Patra, D.; Shunmugam, R. Hierarchical Self-Assembled Nanostructures of Lactone-Derived Thiobarbiturate Homopolymers for Stimuli-Responsive Delivery Applications. Polym. Chem. 2020, 11, 3340–3348. DOI: 10.1039/D0PY00367K.
  • Chang, S. H.; Lee, H. J.; Park, S.; Kim, Y.; Jeong, B. Fast Degradable Polycaprolactone for Drug Delivery. Biomacromolecules 2018, 19, 2302–2307. DOI: 10.1021/acs.biomac.8b00266.
  • Zhou, S.; Deng, X.; Yang, H. Biodegradable Poly(epsilon-caprolactone)-Poly(ethylene glycol) Block Copolymers: Characterization and their use as Drug Carriers for a Controlled Delivery System. Biomaterials 2003, 24, 3563–3570. DOI: 10.1016/S0142-9612(03)00207-2.
  • Surnar, B.; Subash, P. P.; Jayakannan, M. Biodegradable Block Copolymer Scaffolds for Loading and Delivering Cisplatin Anticancer Drug. Z Anorg. Allg. Chem. 2014, 640, 1119–1126. DOI: 10.1002/zaac.201400030.
  • Surnar, B.; Jayakannan, M. Stimuli-Responsive Poly(Caprolactone) Vesicles for Dual Drug Delivery under the Gastrointestinal Tract. Biomacromolecules 2013, 14, 4377–4387. DOI: 10.1021/bm401323x.
  • Yang, R.; Meng, F.; Ma, S.; Huang, F.; Liu, H.; Zhong, Z. Galactose-Decorated Cross-Linked Biodegradable Poly(Ethylene Glycol)-b-Poly(ε-Caprolactone) Block Copolymer Micelles for Enhanced Hepatoma-Targeting Delivery of Paclitaxel. Biomacromolecules 2011, 12, 3047–3055. DOI: 10.1021/bm2006856.
  • Yan, J.; Ye, Z.; Chen, M.; Liu, Z.; Xiao, Y.; Zhang, Y.; Zhou, Y.; Tan, W.; Lang, M. Fine Tuning Micellar Core-Forming Block of Poly(Ethylene Glycol)-Block-Poly(ε-Caprolactone) Amphiphilic Copolymers Based on Chemical Modification for the Solubilization and Delivery of Doxorubicin. Biomacromolecules 2011, 12, 2562–2572. DOI: 10.1021/bm200375x.
  • Manjili, H. K.; Sharafi, A.; Danafar, H.; Hosseini, M.; Ramazani, A.; Ghasemi, H. Poly(Caprolactone)-Poly(Ethylene Glycol)-Poly(Caprolactone) (PCL-PEG-PCL) Nanoparticles: A Valuable and Efficient System for in Vitro and in Vivo Delivery of Curcumin. RSC Adv. 2016, 6, 14403–14415. DOI: 10.1039/C5RA24942B.
  • Gou, M.; Zheng, L.; Peng, XYun.; Men, K.; Zheng, X.; Zeng, S.; Guo, G.; Luo, F.; Zhao, X.; Chen, L.; et al. Poly(epsilon-caprolactone)-Poly(ethylene glycol)-Poly(epsilon-caprolactone) (PCL-PEG-PCL) Nanoparticles for Honokiol Delivery In Vitro. Int. J. Pharm. 2009, 375, 170–176. DOI: 10.1016/j.ijpharm.2009.04.007.
  • Wang, H.; He, J.; Zhang, M.; Tao, Y.; Li, F.; Tam, K. C.; Ni, P. Biocompatible and Acid-Cleavable Poly(ε-Caprolactone)-Acetal-Poly(Ethylene Glycol)-Acetal-Poly(ε-Caprolactone) Triblock Copolymers: synthesis, Characterization and pH-Triggered Doxorubicin Delivery. J. Mater. Chem. B. 2013, 1, 6596–6607. DOI: 10.1039/c3tb21170c.
  • Charoongchit, P.; Suksiriworapong, J.; Mao, S.; Sapin-Minet, A.; Maincent, P.; Junyaprasert, V. B. Investigation of Cationized Triblock and Diblock Poly(ε-caprolactone)-co-Poly(ethylene glycol) Copolymers for Oral Delivery of Enoxaparin: In Vitro Approach. Acta Biomater. 2017, 61, 180–192. DOI: 10.1016/j.actbio.2017.08.006.
  • Kim, S. Y.; Cho, S. H.; Lee, Y. M.; Chu, L.-Y. Biotin-Conjugated Block Copolymeric Nanoparticles as Tumor-Targeted Drug Delivery Systems. Macromol. Res. 2007, 15, 646–655. DOI: 10.1007/BF03218945.
  • Zamani, M.; Aghajanzadeh, M.; Rostamizadeh, K.; Manjili, H. K.; Fridoni, M.; Danafar, H. In Vivo Study of Poly(Ethylene Glycol)-Poly(Caprolactone)-Modified Folic Acid Nanocarriers as a pH Responsive System for Tumor-Targeted Co-Delivery of Tamoxifen and Quercetin. J. Drug. Deliv. Sci. Tec. 2019, 54, 101283. DOI: 10.1016/j.jddst.2019.101283.
  • Feng, R.; Zhu, W.; Chu, W.; Teng, F.; Meng, N.; Deng, P.; Song, Z. Y-Shaped Folic Acid-Conjugated PEG-PCL Copolymeric Micelles for Delivery of Curcumin. Anticancer Agents Med. Chem. 2017, 17, 599–607. DOI: 10.2174/1871520616666160815124014.
  • Liu, L.; Zheng, M.; Librizzi, M.; Renette, T.; Merkel, O.; Kissel, T. Efficient and Tumor Targeted siRNA Delivery by Polyethylenimine-Graft-Polycaprolactone-Block-Poly(ethylene glycol)-Folate (PEI-PCL-PEG-Fol). Mol. Pharm. 2016, 13, 134–143. DOI: 10.1021/acs.molpharmaceut.5b00575.
  • Liu, L.; Zheng, M.; Renette, T.; Kissel, T, Modular Synthesis of Folate Conjugated Ternary Copolymers: Polyethylenimine-Graft-Polycaprolactone-Block-Poly(Ethylene Glycol)-Folate for Targeted Gene Delivery. Bioconjugate Chem. 2012, 23, 1211–1220. DOI: 10.1021/bc300025d.
  • Manickam, D. S.; Li, J.; Putt, D. A.; Zhou, Q.-H.; Wu, C.; Lash, L. H.; Oupický, D. Effect of Innate Glutathione Levels on Activity of Redox-Responsive Gene Delivery Vectors. J. Control Release 2010, 141, 77–84. DOI: 10.1016/j.jconrel.2009.08.022.
  • Ren, T.-B.; Feng, Y.; Zhang, Z.-H.; Li, L.; Li, Y.-Y. Shell-Sheddable Micelles Based on Star-Shaped Poly(ε-Caprolactone)-SS-Poly(Ethyl Glycol) Copolymer for Intracellular Drug Release. Soft Matter 2011, 7, 2329–2331. DOI: 10.1039/c1sm05020f.
  • Bhattacharya, S.; Ganivada, M. N.; Dinda, H.; Sarma, J. D.; Shunmugam, R. Biodegradable Copolymer for Stimuli-Responsive Sustained Release of Doxorubicin. ACS Omega 2016, 1, 108–117. DOI: 10.1021/acsomega.6b00018.
  • Li, H.; Jiang, H.; Zhao, M.; Fu, Y.; Sun, X. Intracellular Redox Potential-Responsive Micelles Based on Polyethylenimine-Cystamine-Poly(ε-Caprolactone) Block Copolymer for Enhanced miR-34a Delivery. Polym. Chem. 2015, 6, 1952–1960. DOI: 10.1039/C4PY01623H.
  • Mahdaviani, P.; Bahadorikhalili, S.; Navaei-Nigjeh, M.; Vafaei, S. Y.; Esfandyari-Manesh, M.; Abdolghaffari, A. H.; Daman, Z.; Atyabi, F.; Ghahremani, M. H.; Amini, M.; et al. Peptide Functionalized Poly Ethylene Glycol-Poly Caprolactone Nanomicelles for Specific Cabazitaxel Delivery to Metastatic Breast Cancer Cells. Mater. Sci. Eng. C. 2017, 80, 301–312. DOI: 10.1016/j.msec.2017.05.126.
  • Li, H. Y.; Zhang, B.; Chan, P. S.; Weng, J.; Tsang, C. K.; Lee, W. Y. T. Convergent Synthesis and Characterization of Fatty Acid-Conjugated Poly(Ethylene Glycol)-Block-Poly(Epsilon-Caprolactone) Nanoparticles Forimproved Drug Delivery to the Brain. Eur. Polym. J. 2018, 98, 394–401. DOI: 10.1016/j.eurpolymj.2017.11.038.
  • Scheiner, K. C.; Maas-Bakker, R. F.; Nguyen, T. T.; Duarte, A. M.; Hendriks, G.; Sequeira, L.; Duffy, G. P.; Steendam, R.; Hennink, W. E.; Kok, R. J. Sustained Release of Vascular Endothelial Growth Factor from Poly(ε-Caprolactone-Peg-ε-Caprolactone)-b-Poly(l-Lactide) Multiblock Copolymer Microspheres. ACS Omega 2019, 4, 11481–11492. DOI: 10.1021/acsomega.9b01272.
  • Yang, Y.; Hua, C.; Dong, C.-M. Synthesis, self-Assembly, and In Vitro Doxorubicin Release behavior of Dendron-Like/Linear/Dendron-Like Poly(epsilon-caprolactone)-b-Poly(ethylene glycol)-b-Poly(epsilon-caprolactone) Triblock Copolymers. Biomacromolecules 2009, 10, 2310–2318. DOI:.1021/bm900497z. DOI: 10.1021/bm900497z.
  • Yoon, K.; Kang, H. C.; Li, L.; Cho, H.; Park, M.-K.; Lee, E.; Bae, Y. H.; Huh, K. M. Amphiphilic Poly(Ethylene Glycol)-Poly(ε-Caprolactone) AB2 Miktoarm Copolymers for Self-Assembled Nanocarrier Systems: synthesis, Characterization, and Effects of Morphology on Antitumor Activity. Polym. Chem. 2015, 6, 531–542. DOI: 10.1039/C4PY01380H.
  • Gou, P.-F.; Zhu, W.-P.; Shen, Z.-Q. Drug-Grafted Seven-Arm Amphiphilic Star Poly(ε-Caprolactone-co-Carbonate)-b-Poly(Ethylene Glycol)s Based on a Cyclodextrin Core: synthesis and Self-Assembly Behavior in Water. Polym. Chem. 2010, 1, 1205–1214. DOI: 10.1039/c0py00043d.
  • Wang, F.; Bronich, T. K.; Kabanov, A. V.; Rauh, R. D.; Roovers, J. Synthesis and Evaluation of a Star Amphiphilic Block Copolymer from Poly(epsilon-caprolactone) and Poly(ethylene glycol) as a Potential Drug Delivery Carrier. Bioconjug. Chem. 2005, 16, 397–405. DOI: 10.1021/bc049784m.
  • Zhou, Y.; Li, L.; Chen, W.; Li, D.; Zhou, N.; He, J.; Ni, P.; Zhang, Z.; Zhu, X. Twin-Tailed Tadpole-Shaped Amphiphilic Copolymer of Poly(Ethylene Glycol) and Cyclic Poly(ɛ-Caprolactone): Synthesis, Self-Assembly and Biomedical Application. Polym. Chem. 2018, 9, 4343–4353. DOI: 10.1039/x0xx00000x.
  • Buwalda, S.; Samad, A. A.; Jundi, A. E.; Bethry, A.; Bakkour, Y.; Coudane, J.; Nottelet, B. Stabilization of Poly(Ethylene Glycol)-Poly(ε-Caprolactone) Star Block Copolymer Micelles via Aromatic Groups for Improved Drug Delivery Properties. J Colloid Interface Sci. 2018, 514, 468–478. DOI: 10.1016/j.jcis.2017.12.057.
  • Washington, K. E.; Kularatne, R. N.; Du, J.; Ren, Y.; Gillings, M. J.; Geng, C. X.; Biewer, M. C.; Stefan, M. C. Thermoresponsive Star-like γ-Substituted Poly(Caprolactone)s Formicellar Drug Delivery. J. Mater. Chem. B. 2017, 5, 5632–5640. DOI: 10.1039/x0xx00000x.
  • Dai, X.-H.; Wang, Z.-M.; Huang, Y.-F.; Pan, J.-M.; Yan, Y.-S.; Liu, D.-M.; Sun, L. Biomimetic Star-Shaped Poly(ε-Caprolactone)-b-Glycopolymerblock Copolymers with Porphyrin Core for Targeted Photodynamic Therapy. RSC Adv. 2014, 4, 42486–42493. DOI: 10.1039/C4RA07402E.
  • Tao, Y.; He, J.; Zhang, M.; Hao, Y.; Liu, J.; Ni, P. Galactosylated Biodegradable Poly-(ε-Caprolactone-co-Phosphoester) Random Copolymer Nanoparticles for Potent Hepatoma Targeting Delivery of Doxorubicin. Polym. Chem. 2014, 5, 3443–3452. DOI: 10.1039/C4PY00024B.
  • Chen, W.; Meng, F.; Cheng, R.; Deng, C.; Feijen, J.; Zhong, Z. Biodegradable Glycopolymer-b-Poly(ε-Caprolactone) Block Copolymer Micelles: versatile Construction, Tailored Lactose Functionality, and Hepatoma-Targeted Drug Delivery. J. Mater. Chem. B. 2015, 3, 2308–2317. DOI: 10.1039/c4tb01962h.
  • Jundi, A. E.; Buwalda, S.; Bethry, A.; Hunger, S.; Coudane, J.; Bakkour, Y.; Nottelet, B. Double-Hydrophilic Block Copolymers Based on Functional Poly(ε-Caprolactone)s for pH-Dependent Controlled Drug Delivery. Biomacromolecules 2020, 21, 397–407. DOI: 10.1021/acs.biomac.9b01006.
  • Zhong, Y.; Wang, C.; Cheng, L.; Meng, F.; Zhong, Z.; Liu, Z. Gold Nanorod-Cored Biodegradable Micelles as a Robust and Remotely Controllable Doxorubicin Release System for Potent Inhibition of Drug-Sensitive and -Resistant Cancer Cells. Biomacromolecules 2013, 14, 2411–2419. DOI: 10.1021/bm400530d.
  • Wang, H.; Miao, W.; Wang, F.; Cheng, Y. A Self-Assembled Coumarin-Anchored Dendrimer for Efficient Gene Delivery and Light-Responsive Drug Delivery. Biomacromolecules 2018, 19, 2194–2201. DOI: 10.1021/acs.biomac.8b00246.
  • Shahin, M.; Lavasanifar, A. Novel Self-Associating Poly(ethylene oxide)-b-Poly(epsilon-caprolactone) based Drug Conjugates and Nano-Containers for Paclitaxel Delivery. Int. J. Pharm. 2010, 389, 213–222. DOI: 10.1016/j.ijpharm.2010.01.015.
  • Ali, I.; Kareem, F.; Rahim, S.; Perveen, S.; Ahmed, S.; Shah, M. R.; Malik, M. I. Architecture Based Selectivity of Amphiphilic Block Copolymers of Poly(Ethylene Oxide) and Poly(ε-Caprolactone) for Drug Delivery. React. Funct. Polym. 2020, 150, 104553. DOI: 10.1016/j.reactfunctpolym.2020.104553.
  • Chen, H.-Y.; Lo, Y.-L.; Wu, P.-L.; Lo, P.-C.; Wang, L.-F. Length Effect of Methoxy Poly(Ethylene Oxide)-b-[Poly(ε-Caprolactone)-g-Poly(Methacrylic Acid)] Copolymers on Cisplatin Delivery. Colloids Surf. B Biointerfaces 2017, 156, 243–253. DOI: 10.1016/j.colsurfb.2017.05.034.
  • Xu, Z.; Lu, C.; Lindenberger, C.; Cao, Y.; Wulff, J. E.; Moffitt, M. G. Synthesis, Self-Assembly, and Drug Delivery Characteristics of Poly(Methyl Caprolactone-co-Caprolactone)-b-Poly(Ethylene Oxide) Copolymers with Variable Compositions of Hydrophobic Blocks: Combining Chemistry and Microfluidic Processing for Polymeric Nanomedicines. ACS Omega 2017, 2, 5289–5303. DOI: 10.1021/acsomega.7b00829.
  • Cheng, R.; Wang, X.; Chen, W.; Meng, F.; Deng, C.; Liu, H.; Zhong, Z. Biodegradable Poly(ε-Caprolactone)-g-Poly(2-Hydroxyethyl Methacrylate) Graft Copolymer Micelles as Superior Nano-Carriers for ‘‘Smart’’ Doxorubicin Release. J. Mater. Chem. 2012, 22, 11730–11738. DOI: 10.1039/c2jm30700f.
  • Guillerm, B.; Darcos, V.; Lapinte, V.; Monge, S.; Coudane, J.; Robin, J.-J. Synthesis and Evaluation of Triazole-Linked Poly(ε-Caprolactone)-Graft-Poly(2-Methyl-2-Oxazoline) Copolymers as Potential Drug Carriers. Chem. Commun. (Camb.) 2012, 48, 2879–2881. DOI: 10.1039/c2cc30191a.
  • Han, S.; Wan, H.; Lin, D.; Guo, S.; Dong, H.; Zhang, J.; Deng, L.; Liu, R.; Tang, H.; Dong, A. Contribution of Hydrophobic/Hydrophilic Modification on Cationic Chains of Poly(ε-caprolactone)-Graft-Poly(dimethylamino ethylmethacrylate) Amphiphilic Co-Polymer in Gene Delivery. Acta Biomater. 2014, 10, 670–679. DOI: 10.1016/j.actbio.2013.09.035.
  • van de Wetering, P.; Cherng, J. Y.; Talsma, H.; Crommelin, D. J.; Hennink, W. E. 2-(Dimethylamino)Ethyl Methacrylate Based (co)Polymers as Gene Transfer Agents. J. Control. Release 1998, 53, 145–153. DOI: 10.1016/S0168-3659(97)00248-4.
  • de Wolf, H. K.; de Raad, M.; Snel, C.; van Steenbergen, M. J.; Fens, M. H. A. M.; Storm, G.; Hennink, W. E. Biodegradable Poly(2-Dimethylamino Ethylamino)Phosphazene for in Vivo Gene Delivery to Tumor Cells. Effect of Polymer Molecular Weight. Pharm. Res. 2007, 24, 1572–1580. DOI: 10.1007/s11095-007-9299-z.
  • Kong, H.; Chandel, N. S. Regulation of Redox Balance in Cancer and T Cells. J. Biol. Chem. 2017, 293, 7499–7507. DOI: 10.1074/jbc.TM117.000257.
  • Hsu, P.-H.; Arboleda, C.; Stubelius, A.; Li, L.-W.; Olejniczak, J.; Almutairi, A. Highly Responsive and Rapid Hydrogen Peroxide Triggered Degradation of Polycaprolactone Nanoparticles. Biomater. Sci. 2020, 8, 2394–2397. DOI: 10.1039/C9BM02019E.
  • Lee, S. H.; Boire, T. C.; Lee, J. B.; Gupta, M. K.; Zachman, A. L.; Rath, R.; Sung, H.-J. ROS-Cleavable Proline Oligomer Crosslinking of Polycaprolactone for Pro-Angiogenic Host Response. J. Mater. Chem. B. 2014, 2, 7109–7113. DOI: 10.1039/c4tb01094a.
  • Wang, G.; Huang, P.; Qi, M.; Li, C.; Fan, W.; Zhou, Y.; Zhang, R.; Huang, W.; Yan, D. Facile Synthesis of a H2O2-Responsive Alternating Copolymer Bearing Thioether Side Groups for Drug Delivery and Controlled Release. ACS Omega 2019, 4, 17600–17606. DOI: 10.1021/acsomega.9b02923.
  • Luo, Y.-L.; Yu, W.; Xu, F.; Zhang, L.-L. Novel Thermo-Responsive Self-Assembly Micelles from a Double Brush-Shaped PNIPAM-g-(PA-B-PEG-B-PA)-g-PNIPAM Block Copolymer with PNIPAM Polymers as Side Chains. J. Polym. Sci. A Polym. Chem. 2012, 50, 2053–2067. DOI: 10.1002/pola.25980.
  • Chang, C.; Wei, H.; Quan, C.-Y.; Li, Y.-Y.; Liu, J.; Wang, Z.-C.; Cheng, S.-X.; Zhang, X.-Z.; Zhuo, R.-X. Fabrication of Thermo Sensitive PCL-PNIPAAm-PCL Triblock Copolymeric Micelles for Drug Delivery. J. Polym. Sci. A Polym. Chem. 2008, 46, 3048–3057. DOI: 10.1002/pola.22645.
  • Wang, Y.-C.; Li, Y.; Yang, X.-Z.; Yuan, Y.-Y.; Yan, L.-F.; Wang, J. Tunable Thermosensitivity of Biodegradable Polymer Micelles of Poly(ε-Caprolactone) and Polyphosphoester Block Copolymers. Macromolecules 2009, 42, 3026–3032. DOI: 10.1021/ma900288t.
  • Miguel, V. S.; Limer, A. J.; Haddleton, D. M.; Catalina, F.; Peinado, C. Biodegradable and Thermoresponsive Micelles of Triblock Copolymers Based on 2-(N,N-Dimethylamino)Ethyl Methacrylate and e-Caprolactone for Controlled Drug Delivery. Eur. Polym. J. 2008, 44, 3853–3863. DOI: 10.1016/j.eurpolymj.2008.07.056.
  • Soltantabar, P.; Calubaquib, E. L.; Mostafavi, E.; Biewer, M. C.; Stefan, M. C. Enhancement of Loading Efficiency by Coloading of Doxorubicin and Quercetin in Thermoresponsive Polymeric Micelles. Biomacromolecules 2020, 21, 1427–1436. DOI: 10.1021/acs.biomac.9b01742.
  • Malhotra, M.; Surnar, B.; Jayakannan, M. Polymer Topology Driven Enzymatic Biodegradation in Polycaprolactone Block and Random Copolymer Architectures for Drug Delivery to Cancer Cells. Macromolecules 2016, 49, 8098–8112. DOI: 10.1021/acs.macromol.6b01793.
  • Yan, T.; Li, D.; Li, J.; Cheng, F.; Cheng, J.; Huang, Y.; He, J. Effective co-Delivery of Doxorubicin and Curcumin Using a Glycyrrhetinic Acid-Modified Chitosan-Cystamine-Poly(ε-Caprolactone) Copolymer Micelle for Combination Cancer Chemotherapy. Colloids Surf. B Biointerfaces 2016, 145, 526–538. DOI: 10.1016/j.colsurfb.2016.05.070.
  • Marcano, R. G. V.; Tominaga, T. T.; Khalil, N. M.; Pedroso, L. S.; Mainardes, R. M. Chitosan Functionalized Poly (ε-Caprolactone) Nanoparticles for Amphotericin B Delivery. Carbohydr Polym 2018, 202, 345–354. DOI: 10.1016/j.carbpol.2018.08.142.
  • Zhang, Z.; Chen, X.; Gao, X.; Yao, X.; Chen, L.; He, C.; Chen, X. Targeted Dextran-b-Poly(ε-Caprolactone) Micelles for Cancer Treatments. RSC Adv. 2015, 5, 18593–18600. DOI: 10.1039/C4RA15696J.
  • Lu, A.; Petit, E.; Wang, Y.; Su, F.; Li, S. Synthesis and Self-Assembly of Hydroxypropyl Methyl Cellulose-Block-Poly(ε-Caprolactone) Copolymers as Nanocarriers of Lipophilic Drugs. ACS Appl. Nano Mater. 2020, 3, 4367–4375. DOI: 10.1021/acsanm.0c00498.
  • Cao, Y.; Liu, M.; Kuang, Y.; Zu, G.; Xiong, D.; Pei, R. A Poly(ε-Caprolactone)-Poly(Glycerol)-Poly(ε-Caprolactone) Triblock Copolymer for Designing a Polymeric Micelle as a Tumor Targeted Magnetic Resonance Imaging Contrast Agent. J. Mater. Chem. B. 2017, 5, 8408–8416. DOI: 10.1039/c7tb01967j.
  • Ganivada, M. N.; Rao, V.; Dinda, H.; Kumar, P.; Sarma, J. D.; Shunmugam, R. Biodegradable Magnetic Nanocarrier for Stimuli Responsive Drug Release. Macromolecules 2014, 47, 2703–2711. DOI: 10.1021/ma500384m.
  • Mousavi, S.-D.; Maghsoodi, F.; Panahandeh, F.; Yazdian-Robati, R.; Reisi-Vanani, A.; Tafaghodi, M. Doxorubicin Delivery via Magnetic Nanomicelles Comprising from Reduction-Responsive Poly(ethylene glycol)‑b‑Poly(ε‑caprolactone) (PEG-SS-PCL) and Loaded with Superparamagnetic Iron Oxide (SPIO) Nanoparticles: Preparation, Characterization and Simulation. Mater Sci Eng C Mater Biol Appl 2018, 92, 631–643. DOI: 10.1016/j.msec.2018.06.066.
  • Kulkarni, B.; Surnar, B.; Jayakannan, M. Dual Functional Nanocarrier for Cellular Imaging and Drug Delivery in Cancer Cells Based on π-Conjugated Core and Biodegradable Polymer Arms. Biomacromolecules 2016, 17, 1004–1016. DOI: 10.1021/acs.biomac.5b01654.
  • Malikmammadov, E.; Tanir, T. E.; Kiziltay, A.; Hasirci, V.; Hasirci, N. PCL and PCL-Based Materials in Biomedical Applications. J. Biomater. Sci. Polym. Ed. 2017, 29, 863–893. DOI: 10.1080/09205063.2017.1394711.
  • Repanas, A.; Andriopoulou, S.; Glasmacher, B. The Significance of Electrospinning as a Method to Create Fibrous Scaffolds for Biomedical Engineering and Drug Delivery Applications. J. Drug Deliv. Sci. Tec. 2016, 31, 137–146. DOI: 10.1016/j.jddst.2015.12.007.
  • Karuppuswamy, P.; Venugopal, J. R.; Navaneethan, B.; Laiva, A. L.; Ramakrishna, S. Polycaprolactonenanofibers Forthecontrolledrelease of Tetracyclinehydrochloride. Mater. Lett. 2015, 141, 180–186. DOI: 10.1016/j.matlet.2014.11.044.
  • Repanas, A.; Glasmacher, B. Dipyridamole Embedded in Polycaprolactone Fibers Prepared by Coaxial Electrospinning as a Novel Drug Delivery System. J. Drug Deliv. Sci. Tec. 2015, 29, 132–142. DOI: 10.1016/j.jddst.2015.07.001.
  • Liberato, M. S.; Jr. Kogikoski, S.; da Silva, E. R.; de Araujo, D. R.; Guha, S.; Alves, W. A. Polycaprolactone Fibers with Self-Assembled Peptide Micro/Nanotubes: A Practical Route towards Enhanced Mechanical Strength and Drug Delivery Applications. J. Mater. Chem. B. 2016, 4, 1405–1413. DOI: 10.1039/c5tb02240a.
  • Zhang, Y.; Huang, Z.-M.; Xu, X.; Lim, C. T.; Ramakrishna, S. Preparation of Core-Shell Structured PCL-r-Gelatin bi-Component Nanofibers by Coaxial Electrospinning. Chem. Mater. 2004, 16, 3406–3409. DOI: 10.1021/cm049580f.
  • Topuz, F.; Uyar, T. Electrospinning of Cyclodextrin Functional Nanofibers for Drug Delivery Applications. Pharmaceutics 2019, 11, 6. DOI: 10.3390/pharmaceutics11010006.
  • Lin, X.; Tang, D.; Du, H. Self-Assembly and Controlled Release Behaviour of the Water-Insoluble Drug Nifedipine from Electrospun PCL-Based Polyurethane Nanofibres. J. Pharm. Pharmacol. 2013, 65, 673–681. DOI: 10.1111/jphp.12036.
  • Kim, G. H.; Yoon, H.; Park, Y. K. Drug Release from Various Thicknesses of Layered Mats Consisting of Electrospun Polycaprolactone and Polyethylene Oxide Micro/Nanofibers. Appl. Phys. A. 2010, 100, 1197–1204. [Database] DOI: 10.1007/s00339-010-5785-y.
  • Espinoza, S. M.; Patil, H. I.; Martinez, E. S. M.; Pimentel, R. C.; Ige, P. P. Poly-ε Caprolactone (PCL), a Promising Polymer for Pharmaceutical and Biomedical Applications: Focus on Nanomedicine in Cancer. Int. J. Polym. Mater. Po. 2018, 126, 69–126. DOI: 10.1080/00914037.2018.1539990.
  • Adedalwafa, M.; Wang, F.; Wang, L.; Li, C. Biodegradable Poly-Epsilon-Caprolactone (PCL) for Tissue Engineering Applications: A Review. Rev. Adv. Mater. Sci. 2013, 34, 123–140.
  • Ko, C.-Y.; Ku, K.-L.; Yang, S.-R.; Lin, T.-Y.; Peng, S.; Peng, Y.-S.; Cheng, M.-H.; Chu, I.-M. In Vitro and in Vivo co-Culture of Chondrocytes and Bone Marrow Stem Cells in Photocrosslinked PCL-PEG-PCL Hydrogels Enhances Cartilage Formation. J. Tissue Eng. Regen. Med. 2016, 10, 485–496. DOI: 10.1002/term.1846.
  • Zhang, Z.; Ni, J.; Chen, L.; Yu, L.; Xu, J.; Ding, J. Biodegradable and Thermoreversible PCLA-PEG-PCLA Hydrogel as a Barrier for Prevention of Post-Operative Adhesion . Biomaterials 2011, 32, 4725–4736. DOI: 10.1016/j.biomaterials.2011.03.046.
  • Zhang, Z.; Ni, J.; Chen, L.; Yu, L.; Xu, J.; Ding, J. Encapsulation of Cell-Adhesive RGD Peptides into a Polymeric Physical Hydrogel to Prevent Postoperative Tissue Adhesion. J. Biomed. Mater. Res. Part B Appl. Biomater. 2012, 100, 1599–1609. DOI: 10.1002/jbm.b.32728.
  • Honda, M.; Yada, T.; Ueda, M.; Kimata, K. Cartilage Formation by Cultured Chondrocytes in a New Scaffold Made of Poly(L-lactide-epsilon-caprolactone) Sponge. J. Oral Maxillofac. Surg. 2000, 58, 767–775. DOI: 10.1053/joms.2000.7262.
  • Li, Z.; Tan, B. H. Towards the Development of Polycaprolactone Based Amphiphilic Block Copolymers: molecular Design, Self-Assembly and Biomedical Applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 45, 620–634. DOI: 10.1016/j.msec.2014.06.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.