290
Views
7
CrossRef citations to date
0
Altmetric
Review

Smart polymeric nanostructures for targeted delivery of therapeutics

Pages 269-284 | Received 24 Sep 2020, Accepted 17 Oct 2020, Published online: 10 Nov 2020

References

  • Discher, D. E.; Ortiz, V.; Srinivas, G.; Klein, M. L.; Kim, Y.; Christian, D.; Cai, S.; Photos, P.; Ahmed, F. Emerging Applications of Polymersomes in Delivery: From Molecular Dynamics to Shrinkage of Tumors. Prog. Polym. Sci. 2007, 32, 838–857. DOI: 10.1016/j.progpolymsci.2007.05.011.
  • Mai, Y.; Eisenberg, A. Self-Assembly of Block Copolymers. Chem. Soc. Rev. 2012, 41, 5969–5985. DOI: 10.1039/c2cs35115c.
  • Chavez-Santoscoy, A. V.; Roychoudhury, R.; Pohl, N. L.; Wannemuehler, B. M. J.; Narasimhan, B.; Ramer-Tait, A. E. Tailoring the Immune Response by Targeting C-Type Lectin Receptors on Alveolar Macrophages Using “Pathogen-Like’ Amphiphilic Polyanhydride Nanoparticles. Biomaterials 2012, 33, 4762–4772. DOI: 10.1016/j.biomaterials.2012.03.027.
  • Zhang, K.; Jia, Y. G.; Tsai, I. H.; Strandman, S.; Ren, L.; Hong, L.; Zhang, G.; Guan, Y.; Zhang, Y.; Zhu, X. "Bitter-Sweet" Polymeric Micelles Formed by Block Copolymers from Glucosamine and Cholic Acid. Biomacromolecules 2017, 18, 778–786. DOI: 10.1021/acs.biomac.6b01640.
  • Hu, X.; Zhang, Y.; Xie, Z.; Jing, X.; Bellotti, A.; Gu, Z. Stimuli-Responsive Polymersomes for Biomedical Applications. Biomacromolecules 2017, 18, 649–673. DOI: 10.1021/acs.biomac.6b01704.
  • Mintzer, M. A.; Simanek, E. E. Nonviral Vectors for Gene Delivery. Chem. Rev. 2009, 109, 259–302. DOI: 10.1021/cr800409e.
  • Riess, G. Micellization of Block Copolymers. Prog. Polym. Sci. 2003, 28, 1107–1170.
  • Webber, M.; Appel, E.; Meijer, E.; Langer, L. Supramolecular Biomaterials. Nat. Mater. 2016, 15, 13–26. DOI: 10.1038/nmat4474.
  • Liu, X.; Tan, X.; Rao, R.; Ren, Y.; Li, Y.; Yang, X.; Liu, W. Self-Assembled PAEEP-PLLA Micelles with Varied Hydrophilic Block Lengths for Tumor Cell Targeting. ACS Appl Mater Interfaces 2016, 8, 23450–23462. DOI: 10.1021/acsami.6b06346.
  • Discher, B. M.; Won, Y. Y.; Ege, D. S.; Lee, J. C.-M.; Bates, F. S.; Discher, D. E.; Hammer, D. A. Polymersomes: Tough Vesicles Made from Diblock Copolymers. Science 1999, 284, 1143–1146. DOI: 10.1126/science.284.5417.1143.
  • Sung, Y. K.; Kim, S. W. Recent Advances in the Development of Gene Delivery Systems. Biomater. Res. 2019, 23, 8–12. DOI: 10.1186/s40824-019-0156-z.
  • Sahoo, S.; Kayal, S.; Poddar, P.; Dhara, D. Redox-Responsive Efficient DNA and Drug Co-Release from Micelleplexes Formed from a Fluorescent Cationic Amphiphilic Polymer. Langmuir 2019, 35, 14616–14627. DOI: 10.1021/acs.langmuir.9b02921.
  • Haider, T. P.; Völker, C.; Kramm, J.; Landfester, K.; Wurm, F. R. Plastics of the Future? The Impact of Biodegradable Polymers on the Environment and on Society. Angew. Chem. Int. Ed. Engl. 2019, 58, 50–62. DOI: 10.1002/anie.201805766.
  • Liu, G. Y.; Chen, C. J.; Ji, J. Biocompatible and Biodegradable Polymersomes as Delivery Vehicles in Biomedical Applications. Soft Matter 2012, 8, 8811–8821. DOI: 10.1039/c2sm25721a.
  • Parveen, S.; Arjmand, F.; Tabassum, S. Clinical Developments of Antitumor Polymer Therapeutics. RSC Adv. 2019, 9, 24699–24721.
  • Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M. A Review of Stimuli-Responsive Nanocarriers for Drug and Gene Delivery. J. Control. Release 2008, 126, 187–204. DOI: 10.1016/j.jconrel.2007.12.017.
  • Wei, M.; Gao, Y.; Li, X.; Serpe, M. J. Stimuli-Responsive Polymers and Their Applications. Polym. Chem. 2017, 8, 127–143.
  • Zhao, Y.; Guo, Y.; Tang, L. Engineering Cancer Vaccines Using Stimuli-Responsive Biomaterials. Nano Res. 2018, 11, 5355–5371. DOI: 10.1007/s12274-018-2162-1.
  • Hossam S, E.-S.; Ahmed M, A.-A.; Tarek A, A.; Khalid M, E.-S.; Torchilin, V. P. Stimuli-Responsive Nano-Architecture Drug-Delivery Systems to Solid Tumor Micromilieu: Past, Present, and Future Perspectives. ACS Nano. 2018, 12, 10636–10664. DOI: 10.1021/acsnano.8b06104.
  • Wells, C. M.; Harris, M.; Choi, L.; Murali, V. P.; Guerra, F. D.; Jennings, J. A. Stimuli-Responsive Drug Release from Smart Polymers. JFB 2019, 10, 34.
  • Liu, F.; Liu, F. Synthesis and Phase Behavior of Double Sensitive Linear Amphiphilic Prepolymers before Gelation. J. Macromol. Sci. Part A 2020, 57, 310–318.
  • Hong, J.; Oh, J.; Khan, A. Deconstructing Poloxamer and Poloxamine Block Copolymers to Access Poly(Ethylene Glycol) and Poly(Propylene Oxide)-Based Thermoresponsive Polymers. J. Macromol. Sci. Part A 2020, 57, 472–478. DOI: 10.1080/10601325.2020.1724055.
  • Goswami, K. G.; Saha, B.; De, P. Alternating Copolymers with Glycyl-Glycine and Alanyl-Alanine Side-Chain Pendants: Synthesis, Characterization and Solution Properties. J. Macromol. Sci., Part A 2020, 57, 675–683.
  • Ma, Y.; Tang, Y.; Billingham, N. C.; Armes, S. P.; Lewis, A. L. Synthesis of Biocompatible, Stimuli-Responsive, Physical Gels Based on ABA Triblock Copolymers. Biomacromolecules 2003, 4, 864–868. DOI: 10.1021/bm034118u.
  • Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer, R. Nanocarriers as an Emerging Platform for Cancer Therapy. Nat. Nanotechnol. 2007, 2, 751–760. DOI: 10.1038/nnano.2007.387.
  • Banerjee, R.; Dhara, D. Functional Group-Dependent Self-Assembled Nanostructures from Thermo-Responsive Triblock Copolymers. Langmuir 2014, 30, 4137–4146. DOI: 10.1021/la500213h.
  • Lombardo, D.; Kiselev, M. A.; Caccamo, M. T. Smart Nanoparticles for Drug Delivery Application: Development of Versatile Nanocarrier Platforms in Biotechnology and Nanomedicine. J. Nanomater. 2019, 2019, 1–26.
  • Subedi, R. K.; Kang, K.; Choi, H. K. Preparation and Characterization of Solid Lipid Nanoparticles Loaded with Doxorubicin. Eur. J. Pharma. Sci. 2009, 37, 508–513.
  • Itaka, K.; Ishii, T.; Hasegawa, Y.; Kataoka, K. Biodegradable Polyamino Acid-Based Polycations as Safe and Effective Gene Carrier Minimizing Cumulative Toxicity. Biomaterials 2010, 31, 3707–3714. DOI: 10.1016/j.biomaterials.2009.11.072.
  • Aldawsari, H. M.; Dhaliwal, H. K.; Aljaeid, B. M.; Alhakamy, N. A.; Banjar, Z. M.; Amiji, M. M. Optimization of the Conditions for Plasmid DNA Delivery and Transfection with Self-Assembled Hyaluronic Acid-Based Nanoparticles. Mol. Pharm. 2019, 16, 128–140. DOI: 10.1021/acs.molpharmaceut.8b00904.
  • Davis, M. E.; Chen, Z.; Shin, D. Nanoparticle Therapeutics: An Emerging Treatment Modality for Cancer. Nat. Rev. Drug Discov. 2008, 7, 771–782. DOI: 10.1038/nrd2614.
  • Stolnik, S.; Illum, L.; Davis, S. S. Long Circulating Microparticulate Drug Carriers. Adv. Drug Delivery Rev. 1995, 16, 195–214.
  • Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor Vascular Permeability and the EPR Effect in Macromolecular Therapeutics: A Review. J. Control. Release 2000, 65, 271–284.
  • Nishiyama, N.; Okazaki, S.; Cabral, H.; Miyamoto, M.; Kato, Y.; Sugiyama, Y. Novel Cisplatin-Incorporated Polymeric Micelles Can Eradicate Solid Tumors in Mice. Cancer Res. 2003, 63, 8977–8983.
  • Hobbs, K. S.; Monsky, W. L.; Yuan, F.; Roberts, W. G.; Griffith, L.; Torchilin, V. P.; Jain, K. R. Regulation of Transport Pathways in Tumor Vessels: Role of Tumor Type and Microenvironment. Proc. Natl. Acad. Sci. USA 1998, 95, 4607–4612. DOI: 10.1073/pnas.95.8.4607.
  • Jeong, J. H.; Kim, S. W.; Park, T. G. Molecular Design of Functional Polymers for Gene Therapy. Prog. Polym. Sci. 2007, 32, 1239–1274.
  • Moad, G. RAFT Polymerization to Form Stimuli-Responsive Polymers. Polym. Chem. 2017, 8, 177–219.
  • Sung, Y. K.; Kim, S. W. Recent Advances in Polymeric Drug Delivery Systems. Biomater. Res. 2020, 24, 12. DOI: 10.1186/s40824-020-00190-7.
  • Kataoka, K.; Harada, A.; Nagasaki, Y. Block Copolymer Micelles for Drug Delivery: Design, Characterization and Biological Significance. Adv. Drug Deliv. Rev. 2001, 47, 113–131.
  • Bütün, V.; Wang, X. S.; de Paz Báñez, M. V.; Robinson, K. L.; Billingham, N. C.; Armes, S. P.; Tuzar, Z. Synthesis of Shell Cross-Linked Micelles at High Solids in Aqueous Media. Macromolecules 2000, 33, 1–3.
  • Liu, S.; Armes, S. P. The Facile One-Pot Synthesis of Shell Cross-Linked Micelles in Aqueous Solution at High Solids. J. Am. Chem. Soc. 2001, 123, 9910–9911. DOI: 10.1021/ja011206i.
  • Petros, R. A.; DeSimone, J. M. Strategies in the Design of Nanoparticles for Therapeutic Applications. Nat. Rev. Drug Discov. 2010, 9, 615–627. DOI: 10.1038/nrd2591.
  • Greenwald, R. B.; Choe, Y. H.; McGuire, J.; Conover, C. D. Effective Drug Delivery by PEGylated Drug Conjugates. Adv. Drug Deliv. Rev. 2003, 55, 217–250.
  • Insua, I.; Wilkinson, A.; Fernandez-Trillo, F. Polyion Complex (PIC) Particles: Preparation and Biomedical Applications. Eur. Polym. J. 2016, 81, 198–215. DOI: 10.1016/j.eurpolymj.2016.06.003.
  • Wagner, E. Strategies to Improve DNA Polyplexes for in Vivo Gene Transfer: Will “Artificial Viruses” Be the Answer? Pharm. Res. 2004, 21, 8–14.
  • Dey, D.; Kumar, S.; Banerjee, R.; Maiti, S.; Dhara, D. Polyplex Formation between PEGylated Linear Cationic Block Copolymers and DNA: Equilibrium and Kinetic Studies. J. Phys. Chem. B. 2014, 118, 7012–7025. DOI: 10.1021/jp501234p.
  • Lee, J. S.; Feijen, J. Polymersomes for Drug Delivery: Design, Formation and Characterization. J. Control. Release 2012, 161, 473–483. DOI: 10.1016/j.jconrel.2011.10.005.
  • Magdalena, M. P.; Elżbieta, M. O. Dendrimers in Drug Delivery. Nanobiomater. Drug Deliv. 2016, 9, 39–74.
  • Stenzel, M. H. RAFT Polymerization: An Avenue to Functional Polymeric Micelles for Drug Delivery. Chem. Commun. 2008, 14, 3486–3503.
  • Cabral, H.; Miyata, K.; Osada, K.; Kataoka, K. Block Copolymer Micelles in Nanomedicine Applications. Chem. Rev. 2018, 118, 6844–6892. DOI: 10.1021/acs.chemrev.8b00199.
  • Qiu, L. Y.; Bae, Y. H. Polymer Architecture and Drug Delivery. Pharm. Res. 2006, 23, 1–30. DOI: 10.1007/s11095-005-9046-2.
  • Ediriweera, G. R.; Simpson, J. D.; Fuchs, A. V.; Venkatachalam, T. K.; Van De Walle, M.; Howard, C. B.; Mahler, S. M.; Blinco, J. P.; Fletcher, N. L.; Houston, Z. H.; et al. Targeted and Modular Architectural Polymers Employing Bioorthogonal Chemistry for Quantitative Therapeutic Delivery. Chem. Sci. 2020, 11, 3268–3280. DOI: 10.1039/D0SC00078G.
  • Gillies, E. R.; Fréchet, J. M. Dendrimers and Dendritic Polymers in Drug Delivery. Drug Discov. Today. 2005, 10, 35–43.
  • Rath, A.; Theato, P. Advanced AAO Templating of Nanostructured Stimuli‐Responsive Polymers: Hype or Hope? Adv. Funct. Mater. 2020, 30, 1902959.
  • Wen, L.; Xu, R.; Mi, Y.; Lei, Y. Multiple Nanostructures Based on Anodized Aluminium Oxide Templates. Nat. Nanotechnol. 2017, 12, 244–250. DOI: 10.1038/nnano.2016.257.
  • Owen, S. C.; Chan, D. P. Y.; Shoichet, M. S. Polymeric Micelle Stability. Nano Today 2012, 7, 53–65.
  • Ebrahim Attia, A. B.; Yang, C.; Tan, J. P.; Gao, S.; Williams, D. F.; Hedrick, J. L.; Yang, Y. Y. The Effect of Kinetic Stability on Biodistribution and Anti-Tumor Efficacy of Drug-Loaded Biodegradable Polymeric Micelles. Biomaterials 2013, 34, 3132–3140. DOI: 10.1016/j.biomaterials.2013.01.042.
  • Knop, K.; Hoogenboom, R.; Fischer, D.; Schubert, U. Poly(Ethylene Glycol) in Drug Delivery: Pros and Cons as Well as Potential Alternatives. Angew. Chem. Intl. Ed. 2010, 49, 6288–6308. DOI: 10.1002/anie.200902672.
  • Suzuki, T.; Ichihara, M.; Hyodo, K.; Yamamoto, E.; Ishida, T.; Kiwada, H.; Kikuchi, H.; Ishihara, H. Accelerated Blood Clearance of Pegylated Liposomes Containing Doxorubicin upon Repeated Administration to Dogs. Int. J. Pharm. 2014, 476, 205–212. DOI: 10.1016/j.ijpharm.2014.09.047.
  • Shiraishi, K.; Kawano, K.; Maitani, Y.; Aoshi, T.; Ishii, K. J.; Sanada, Y.; Mochizuki, S.; Sakurai, K.; Yokoyama, M. Determination of Polymeric Micelles' Structural Characteristics, and Effect of the Characteristics on Pharmacokinetic Behaviors. J. Control. Release 2016, 234, 59–67. DOI: 10.1016/j.jconrel.2016.05.010.
  • Kataoka, K.; Ishihara, A.; Harada, A.; Miyazaki, H. Effect of the Secondary Structure of Poly(l-Lysine) Segments on the Micellization in Aqueous Milieu of Poly(Ethylene Glycol)−Poly(l-Lysine) Block Copolymer Partially Substituted with a Hydrocinnamoyl Group at the N-Position. Macromolecules 1998, 31, 6071–6076.
  • Stapert, H. R.; Nishiyama, N.; Jiang, D. L.; Aida, T.; Kataoka, K. Polyion Complex Micelles Encapsulating Light-Harvesting Ionic Dendrimer Zinc Porphyrins. Langmuir 2000, 16, 8182–8188.
  • Yokoyama, M.; Miyauchi, M.; Yamada, N.; Okano, T.; Sakurai, Y.; Shohei, I.; Kataoka, K. Polymer Micelles as Novel Drug Carrier: Adriamycin-Conjugated Poly(Ethylene Glycol)-Poly(Aspartic Acid) Block Copolymer. J. Control. Release 1990, 11, 269–278.
  • Ikada, Y.; Tsuji, H. Biodegradable Polyesters for Medical and Ecological Applications. Macromol. Rapid Commun. 2000, 21, 117–132. DOI: 10.1002/(SICI)1521-3927(20000201)21:3<117::AID-MARC117>3.0.CO;2-X.
  • Kabanov, A. V.; Batrakova, E. V.; Alakhov, V. Y. Pluronic® Block Copolymers as Novel Polymer Therapeutics for Drug and Gene Delivery. J. Controlled Release 2002, 82, 189–212.
  • Elsabahy, M.; Perron, M. E. ̀.; Bertrand, N.; Yu, G. E.; Leroux, J. C. Solubilization of Docetaxel in Poly(Ethylene Oxide)-Block-Poly(Butylene/Styrene Oxide) Micelles. Biomacromolecules 2007, 8, 2250–2257.
  • Kaminskas, L. M.; McLeod, V. M.; Ryan, G. M.; Kelly, B. D.; Haynes, J. M.; Williamson, M.; Thienthong, N.; Owen, D. J.; Porter, C. J. H. Pulmonary Administration of a Doxorubicin-Conjugated Dendrimer Enhances Drug Exposure to Lung Metastases and Improves Cancer Therapy. J. Control. Release 2014, 183, 18–26. DOI: 10.1016/j.jconrel.2014.03.012.
  • Guo, X.; Wang, L.; Wei, X.; Zhou, S. Polymer‐Based Drug Delivery Systems for Cancer Treatment. J. Polym. Sci. Part A: Polym. Chem. 2016, 54, 3525–3550. DOI: 10.1002/pola.28252.
  • Kitiri, E. N.; Patrickios, C. S.; Voutouri, C.; Stylianopoulos, T.; Hoffmann, I.; Schweins, R.; Gradzielski, M. Double-Networks Based on pH-Responsive, Amphiphilic “Core-First” Star First Polymer Conetworks Prepared by Sequential RAFT Polymerization. Polym. Chem. 2017, 8, 245–259.
  • Jiang, X.; Chun, F.; Lu, G.; Xiaoyu, H. Oxygen and Carbon Dioxide Dual Gas-Responsive Homopolymers and Diblock Copolymers Synthesized via RAFT Polymerization. Polym. Chem. 2017, 8, 1163–1176. DOI: 10.1039/C6PY02004F.
  • Wang, L.; Liu, G.; Wang, X.; Hu, J.; Zhang, G.; Liu, S. Acid-Disintegrable Polymersomes of pH-Responsive Amphiphilic Diblock Copolymers for Intracellular Drug Delivery. Macromolecules 2015, 48, 7262–7272.
  • Lovett, J. R.; Warren, N. J.; Ratcliffe, L. P.; Kocik, M. K.; Armes, S. P. pH-Responsive Non-Ionic Diblock Copolymers: Ionization of Carboxylic Acid End-Groups Induces an Order-Order Morphological Transition N Order-Order Morphological Transition. Angew. Chem. Int. Ed. 2015, 54, 1279–1283. DOI: 10.1002/anie.201409799.
  • Zhou, Q.; Zhang, L.; Yang, T. H.; Wu, H. Stimuli-Responsive Polymeric Micelles for Drug Delivery and Cancer Therapy. Int. J. Nanomedicine 2018, 13, 2921–2942. DOI: 10.2147/IJN.S158696.
  • Saha, S.; Xiong, X.; Chakraborty, P. K.; Shameer, K.; Arvizo, R. R.; Kudgus, R. A.; Dhar, S. K.; Hossen, D. M. N.; Gillies, E. M.; Robertson, J. D.; et al. Gold Nanoparticle Reprograms Pancreatic Tumor Microenvironment and Inhibits Tumor Growth. ACS Nano. 2016, 10, 10636–10651. DOI: 10.1021/acsnano.6b02231.
  • Abuchowski, A.; McCoy, J. R.; Palczuk, N. C.; Van Es, T.; Davis, F. F. Effect of Covalent Attachment of Polyethylene Glycol on Immunogenicity and Circulating Life of Bovine Liver Catalase. J. Biol. Chem. 1977, 252, 3582–3586.
  • Hoang Thi, T. T.; Pilkington, E. H.; Nguyen, D. H.; Lee, J. S.; Park, K. D.; Truong, N. P. The Importance of Poly(Ethylene Glycol) Alternatives for Overcoming PEG Immunogenicity in Drug Delivery and Bioconjugation. Polymers 2020, 12, 298.
  • Huang, X.; Liao, W.; Xie, Z.; Chen, D.; Zhang, C. Y. A pH-Responsive Prodrug Delivery System Self-Assembled from Acid-Labile Doxorubicin-Conjugated Amphiphilic pH-Sensitive Block Copolymers. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 90, 27–37. DOI: 10.1016/j.msec.2018.04.036.
  • Fu, J.; Fiege, J.; Hanes, J. Synthesis and Characterization of PEG-Based Ether − Anhydride Terpolymers: Novel Polymers for Controlled Drug Delivery. Macromolecules 2004, 37, 7174–7180.
  • Pan, Q.; Zong, Z.; Shen, j.; Xue, H.; Pu, Y. Synthesis, Self-Assembly, and pH-Responsive Drug Release of PHMEMA-PEG-PHMEMA ABA Triblock Copolymers. J. Macromol. Sci. Part A 2018, 55, 691–697.
  • Lachelt, U.; Wagner, E. Nucleic Acid Therapeutics Using Polyplexes: A Journey of 50 Years (and beyond). Chem. Rev. 2015, 115, 11043–11078.
  • D'souza, A. A.; Shegokar, R. Polyethylene Glycol (PEG): A Versatile Polymer for Pharmaceutical Applications. Expert Opin. Drug. Deliv. 2016, 13, 1257–1275.
  • Ye, W. L.; Zhao, Y. P.; Li, H. Q.; Na, R.; Li, F.; Mei, Q. B.; Zhao, M. G.; Zhou, S. Y. Doxorubicin-Poly(Ethylene Glycol)-Alendronate Self-Assembled Micelles for Targeted Therapy of Bone Metastatic Cancer. Sci. Rep. 2015, 5, 14614. DOI: 10.1038/srep14614.
  • Winograd, B.; Leonardi, V.; Palmisano, V.; Pepe, A.; Savio, G.; Laudani, L.; Blasi, A.; Alù, M.; Rondello, G.; Cusimano, M. P.; Agostara, B. PEGylated Liposomal Doxorubicin (Peg-LD) and Paclitaxel in Patients with Metastatic Breast Carcinoma: A Phase II Study. J. Clin. Oncol. 2005, 23, 884–884.
  • Tucker, B. S.; Sumerlin, B. S. Poly(N-(2-Hydroxypropyl) Methacrylamide)-Based Nanotherapeutics. Polym. Chem. 2014, 5, 1566–1572.
  • Kim, T. H.; Alle, M.; Kim, J. C. Oxidation- and Temperature-Responsive Poly(Hydroxyethyl Acrylate-co-Phenyl Vinyl Sulfide) Micelle as a Potential Anticancer Drug Carrier. Pharmaceutics 2019, 11, 462.
  • Peppas, N. A. Hydrogels in Medicine and Pharmacy. Properties and Applications; CRC Press: Boca Raton, 1987.
  • Broaders, K. E.; Grandhe, S.; Fréchet, J. M. A Biocompatible oxidation-Triggered Carrier Polymer with Potential in Therapeutics. J. Am. Chem. Soc. 2011, 133, 756–758. DOI: 10.1021/ja110468v.
  • Kohane, D. S.; Langer, R. Biocompatibility and Drug Delivery Systems. Chem. Sci. 2010, 1, 441–446. DOI: 10.1039/C0SC00203H.
  • Sundar, D. S.; Antoniraj, M. G.; Kumar, C. S.; Mohapatra, S. S.; Houreld, N. N.; Ruckmani, K. Recent Trends of Biocompatible and Biodegradable Nanoparticles in Drug Delivery: A Review. Curr. Med. Chem. 2016, 23, 3730–3751. DOI: 10.2174/0929867323666160607103854.
  • Uchegbu, I. F.; Carlos, M.; McKay, C.; Hou, X.; Schätzlein, A. G. Chitosan Amphiphiles Provide New Drug Delivery Opportunities. Polym. Int. 2014, 63, 1145–1153.
  • Wang, Y.; Khan, A.; Liu, Y.; Feng, J.; Dai, L.; Wang, G.; Alam, N.; Tong, L.; Ni, Y. Chitosan Oligosaccharide-Based Dual pH Responsive Nano-Micelles for Targeted Delivery of Hydrophobic Drugs. Carbohydr. Polym. 2019, 223, 115061.
  • Quiñones, J. P.; Peniche, H.; Peniche, C. Chitosan Based Self-Assembled Nanoparticles in Drug Delivery. Polymers 2018, 10, 235.
  • Bhavsar, C.; Momin, M.; Gharat, S.; Omri, A. Functionalized and Graft Copolymers of Chitosan and Its Pharmaceutical applications. Expert Opin. Drug Deliv. 2017, 14, 1189–1204. DOI: 10.1080/17425247.2017.1241230.
  • Shi, W.; Gu, C.; Jiang, H.; Zhang, M.; Lang, M. Effects of Amphiphilic Chitosan-g-Poly(ε-Caprolactone) Polymer Additives on Paclitaxel Release from Drug Eluting Implants. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 45, 502–509. DOI: 10.1016/j.msec.2014.09.020.
  • Argüelles-Monal, W.; Lizardi-Mendoza, J.; Fernández-Quiroz, D.; Recillas-Mota, M.; Montiel-Herrera, M. Chitosan Derivatives: Introducing New Functionalities with a Controlled Molecular Architecture for Innovative Materials. Polymers 2018, 10, 342. DOI: 10.3390/polym10030342.
  • Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-Responsive Nanocarriers for Drug Delivery. Nat. Mater. 2013, 12, 991–1003. DOI: 10.1038/nmat3776.
  • Liu, D.; Yang, F.; Xiong, F.; Gu, N. The Smart Drug Delivery System and Its Clinical Potential. Theranostics 2016, 6, 1306–1323. DOI: 10.7150/thno.14858.
  • Zhang, Q.; Ko, N. R.; Oh, J. K. Recent Advances in Stimuli-Responsive Degradable Block Copolymer Micelles: Synthesis and Controlled Drug Delivery Applications. Chem. Commun. 2012, 48, 7542–7552. DOI: 10.1039/c2cc32408c.
  • Hu, J.; Zhang, G.; Ge, Z.; Liu, S. Stimuli-Responsive Tertiary Amine Methacrylate-Based Block Copolymers: Synthesis, Supramolecular Self-Assembly and Functional Applications. Prog. Polym. Sci. 2014, 39, 1096–1143. DOI: 10.1016/j.progpolymsci.2013.10.006.
  • Yin, J.; Chen, Y.; Zhang, Z. H.; Han, X. Stimuli-Responsive Block Copolymer-Based Assemblies for Cargo Delivery and Theranostic Applications. Polymers 2016, 8, 268.
  • Quinn, J. F.; Whittaker, M. R.; Davis, T. P. Glutathione Responsive Polymers and Their Application in Drug Delivery Systems. Polym. Chem. 2017, 8, 97–126. DOI: 10.1039/C6PY01365A.
  • Hunter, A. C.; Moghimi, S. M. Smart Polymers in Drug Delivery: A Biological Perspective. Polym. Chem. 2017, 8, 41–51. DOI: 10.1039/C6PY00676K.
  • Rao, N. V.; Ko, H.; Lee, J.; Park, J. H. Recent Progress and Advances in Stimuli-Responsive Polymers for Cancer Therapy. Front. Bioeng. Biotechnol. 2018, 6, 110. DOI: 10.3389/fbioe.2018.00110.
  • Qiao, Y.; Wan, J.; Zhou, L.; Ma, W.; Yang, Y.; Luo, W.; Yu, Z.; Wang, H. Stimuli-Responsive Nanotherapeutics for Precision Drug Delivery and Cancer Therapy. Nanomed. Nanobiotechnol. 2019, 11, 1527.
  • Sawant, R. M.; Hurley, J. P.; Salmaso, S.; Kale, A.; Tolcheva, E.; Levchenko, T. S.; Torchilin, V. P. “SMART” Drug Delivery Systems: Double-Targeted pH-Responsive Pharmaceutical Nanocarriers. Bioconjugate Chem. 2006, 17, 943–949. DOI: 10.1021/bc060080h.
  • Samanta, P.; Kapat, K.; Maiti, S.; Biswas, G.; Dhara, S.; Dhara, D. pH-Labile and Photochemically Cross-Linkable Polymer Vesicles from Coumarin Based Random Copolymer for Cancer Therapy. J. Colloid Interf. Sci. 2019, 555, 132–144. DOI: 10.1016/j.jcis.2019.07.069.
  • Wang, C.; Qi, P.; Lu, Y.; Liu, L.; Zhang, Y.; Sheng, Q.; Wang, T.; Zhang, M.; Wang, R.; Song, S. Bicomponent Polymeric Micelles for pH-Controlled Delivery of Doxorubicin. Drug Deliv. 2020, 27, 344–357. DOI: 10.1080/10717544.2020.1726526.
  • Zhou, X. X.; Jin, L.; Qi, R. Q.; Ma, T. pH-Responsive Polymeric Micelles Self-Assembled from Amphiphilic Copolymer Modified with Lipid Used as Doxorubicin Delivery Carriers. R. Soc. Open Sci. 2018, 5, 171654. DOI: 10.1098/rsos.171654.
  • Zhou, T.; Xiao, C.; Fan, J.; Chen, S.; Shen, J.; Wu, W.; Zhou, S. A Nanogel of on-Site Tunable pH-Response for Efficient Anticancer Drug Delivery. Acta Biomater. 2013, 9, 4546–4557. DOI: 10.1016/j.actbio.2012.08.017.
  • Wang, H.; Roman, M. Formation and Properties of Chitosan − Cellulose Nanocrystal Polyelectrolyte − Macroion Complexes for Drug Delivery Applications. Biomacromolecules 2011, 12, 1585–1593.
  • Almeida, A.; Silva, D.; Gonçalves, V.; Sarmento, B. Synthesis and Characterization of Chitosan-Grafted-Polycaprolactone Micelles For Modulate Intestinal Paclitaxel Delivery. Drug Deliv. Transl. Res. 2018, 8, 387–397. DOI: 10.1007/s13346-017-0357-8.
  • Kong, M.; Peng, X.; Cui, H.; Liu, P.; Pang, B.; Zhang, K. pH-Responsive Polymeric Nanoparticles with Tunable Sizes for Targeted Drug Delivery. RSC Adv. 2020, 10, 4860–4868. DOI: 10.1039/C9RA10280A.
  • Liu, S. Q.; Tong, Y. W.; Yang, Y. Y. Incorporation and in Vitro Release of Doxorubicin in Thermally Sensitive Micelles Made from Poly(N-Isopropylacrylamide-co-N,N-Dimethylacrylamide)-b-Poly(D,L-Lactide-co-Glycolide) with Varying Compositions. Biomaterials 2005, 26, 5064–5074. DOI: 10.1016/j.biomaterials.2005.01.030.
  • Tian, Y.; Liu, Y.; Ju, B.; Ren, X.; Dai, M. Thermoresponsive 2-Hydroxy-3-Isopropoxypropyl Hydroxyethyl Cellulose with Tunable LCST for Drug Delivery. RSC Adv. 2019, 9, 2268–2276. DOI: 10.1039/C8RA09075K.
  • Hajebi, S.; Abdollahi, A.; Mamaqani, H. R.; Kalajahi, M. S. Temperature-Responsive Poly(N-Isopropylacrylamide) Nanogels: The Role of Hollow Cavities and Different Shell Cross-Linking Densities on Doxorubicin Loading and Release. Langmuir 2020, 36, 2683–2694. DOI: 10.1021/acs.langmuir.9b03892.
  • Prince, D. A.; Villamagna, I. J.; Hopkins, C. C.; de Bruyn, J. R.; Gillies, E. R. Effect of Drug Loading on the Properties of Temperature‐Responsive Polyester–Poly(Ethylene Glycol)–Polyester Hydrogels. Polym. Int. 2019, 68, 1074–1083. DOI: 10.1002/pi.5797.
  • Zavgorodnya, O.; Carmona-Moran, C. A.; Kozlovskaya, V.; Liu, F.; Wick, T. M.; Kharlampieva, E. Temperature-Responsive Nanogel Multilayers of Poly(N-Vinylcaprolactam) for Topical Drug Delivery. J. Colloid Interf. Sci. 2017, 506, 589–602. DOI: 10.1016/j.jcis.2017.07.084.
  • Lee, R. S.; Lin, C. H.; Aljuffali, I. A.; Hu, K. Y.; Fang, J. Y. Passive Targeting of Thermosensitive Diblock Copolymer Micelles to the Lungs: Synthesis and Characterization of Poly(N-Isopropylacrylamide)-block-Poly(ε-Caprolactone). J. Nanobiotechnol. 2015, 13, 42. DOI: 10.1186/s12951-015-0103-7.
  • Parida, S.; Maiti, C.; Rajesh, Y.; Dey, K. K.; Pal, I.; Parekh, A.; Patra, R.; Dhara, D.; Dutta, P. K.; Mandal, M. Gold Nanorod Embedded Reduction Responsive Block Copolymer Micelle-Triggered Drug Delivery Combined with Photothermal Ablation for Targeted Cancer Therapy. Biochim. Biophys. Acta. Gen. Subj. 2017, 1861, 3039–3052. DOI: 10.1016/j.bbagen.2016.10.004.
  • Maiti, C.; Parida, S.; Kayal, S.; Maiti, S.; Mandal, M.; Dhara, D. Redox-Responsive Core-Cross-Linked Block Copolymer Micelles for Overcoming Multidrug Resistance in Cancer Cells. ACS Appl. Mater. Interfaces 2018, 10, 5318–5330. DOI: 10.1021/acsami.7b18245.
  • Weng, C.; Chen, H.; Xu, T.; Li, Z.; Liu, X.; Ding, M.; Zhang, Q.; Tan, H.; Fu, Q. Photo-Responsive Self-Reducible Polymers: Overcoming the Spatiotemporal Barriers for Hypersensitivity. ACS Mater. Lett. 2020, 2, 602–609.
  • Zhang, J.; Si, D.; Wang, S.; Chen, X.; Zhou, H.; Yang, M. Photo-Induced Hydrogen-Bonding Complexes for Drug Periodic Release. Biomater. Sci. 2019, 7, 2468–2479. DOI: 10.1039/c9bm00269c.
  • Biswas, G.; Jena, B. C.; Maiti, S.; Samanta, P.; Mandal, M.; Dhara, D. Photoresponsive Block Copolymer Prodrug Nanoparticles as Delivery Vehicle for Single and Dual Anticancer Drugs. ACS Omega. 2017, 2, 6677–6690. DOI: 10.1021/acsomega.7b00911.
  • Wei, J.; Sun, J.; Yang, X.; Ji, S.; Wei, Y.; Li, Z. Self-Crosslinking Assemblies with Tunable Nanostructures from Photoresponsive Polypeptoid-Based Block Copolymers. Polym. Chem. 2020, 11, 337–343.
  • Zardad, A. Z.; Choonara, Y. E.; Du Toit, L. C.; Kumar, P.; Mabrouk, M.; Kondiah, P. P. D.; Pillay, V. A Review of Thermo- and Ultrasound-Responsive Polymeric Systems for Delivery of Chemotherapeutic Agents. Polymers 2016, 8, 359.
  • Cheng, R.; Meng, F.; Deng, C.; Klok, H. A.; Zhong, Z. Dual and Multi-Stimuli Responsive Polymeric Nanoparticles for Programmed Site-Specific Drug Delivery. Biomaterials 2013, 34, 3647–3657. DOI: 10.1016/j.biomaterials.2013.01.084.
  • Kotsuchibashi, Y.; Takiguchi, T.; Ebara, M.; Aoyagi, T. The Effects of the Photo-Induced Proton Generation on the Assembly Formation of Dual-Temperature and pH Responsive Block Copolymers. Polym. Chem. 2017, 8, 295–302. DOI: 10.1039/C6PY01269H.
  • Zhao, X.; Qi, M.; Liang, S.; Tian, K.; Zhou, T.; Jia, X.; Li, J.; Liu, P. Synthesis of Photo- and pH Dual-Sensitive Amphiphilic Copolymer PEG43-b-P(AA76-co-NBA35-co-tBA9) and Its Micellization as Leakage-Free Drug Delivery System for UV-Triggered Intracellular Delivery of Doxorubicin. ACS Appl. Mater. Interfaces 2016, 8, 22127–22134. DOI: 10.1021/acsami.6b08935.
  • Wang, D.; Green, M. D.; Chen, K.; Daengngam, C.; Kotsuchibashi, Y. Stimuli-Responsive Polymers: Design, Synthesis, Characterization, and Applications. Int. J. Polym. Sci. 2016, 2016, 1–3.
  • Kocak, G.; Tuncer, C.; Bütün, V. pH-Responsive Polymers. Polym. Chem. 2017, 8, 144–176. DOI: 10.1039/C6PY01872F.
  • Manouras, T.; Vamvakaki, M. Field Responsive Materials: Photo-, Electro-, Magnetic- and Ultrasound-Sensitive Polymers. Polym. Chem. 2017, 8, 74–96. DOI: 10.1039/C6PY01455K.
  • Liu, H.; Lin, S.; Feng, Y.; Theato, P. CO2-Responsive Polymer Materials. Polym. Chem. 2017, 8, 12–23. DOI: 10.1039/C6PY01101B.
  • Mutalabisin, M. F.; Chatterjee, B.; Jaffri, J. M. pH Responsive Polymers in Drug Delivery. Res. J. Pharm. Tech. 2018, 11, 115–122.
  • Deirram, N.; Zhang, C.; Kermaniyan, S. S.; Johnston, A. P. R.; Such, J. K. pH‐Responsive Polymer Nanoparticles for Drug Delivery. Macromol. Rapid Commun. 2019, 40, 1800917. DOI: 10.1002/marc.201800917.
  • Basu, A.; Kunduru, K. R.; Abtew, E.; Domb, A. J. Polysaccharide-Based Conjugates for Biomedical Applications. Bioconjugate Chem. 2015, 26, 1396–1412. DOI: 10.1021/acs.bioconjchem.5b00242.
  • El-Nemr, A.; Serag, E.; El-Maghraby, A.; Fathy, S. A.; Hamid, F. F. A. Manufacturing of pH Sensitive PVA/PVP/MWCNT and PVA/PEG/MWCNT Nanocomposites: An Approach for Significant Drug Release. J. Macromol. Sci. Part A 2019, 56, 781–793.
  • Çetin, K.; Alkan, H.; Bereli, N.; Denizli, A. Molecularly Imprinted Cryogel as a pH-Responsive Delivery System for Doxorubicin. J. Macromol. Sci. Part A 2017, 54, 502–508.
  • Kim, K.; Choi, H.; Choi, E. S.; Park, M. H.; Ryu, J. H. Hyaluronic Acid-Coated Nanomedicine for Targeted Cancer Therapy. Pharmaceutics 2019, 11, 301.
  • Cao, M.; Wang, Y.; Hu, X.; Gong, H.; Li, R.; Cox, H.; Zhang, J.; Waigh, T. A.; Xu, H.; Lu, J. R. Reversible Thermoresponsive Peptide-PNIPAM Hydrogels for Controlled Drug Delivery. Biomacromolecules 2019, 20, 3601–3610. DOI: 10.1021/acs.biomac.9b01009.
  • Hajebi, S.; Rabiee, N.; Bagherzadeh, M.; Ahmadi, S.; Rabiee, M.; Mamaqani, H. R.; Tahriri, M.; Tayebi, L.; Hamblin, M. R. Stimulus-Responsive Polymeric Nanogels as Smart Drug Delivery Systems. Acta Biomater. 2019, 92, 1–18. DOI: 10.1016/j.actbio.2019.05.018.
  • Kozlovskaya, V.; Kharlampieva, E. Self-Assemblies of Thermoresponsive Poly(N-Vinylcaprolactam) Polymers for Applications in Biomedical Field. ACS Appl. Polym. Mater. 2020, 2, 26–39.
  • Hoogenboom, R.; Schlaad, H. Thermoresponsive Poly(2-Oxazoline)s, Polypeptoids, and Polypeptides. Polym. Chem. 2017, 8, 24–40. DOI: 10.1039/C6PY01320A.
  • Abulateefeh, S. R.; Spain, S. G.; Aylott, J. W.; Chan, W. C.; Garnett, M. C.; Alexander, C. Thermoresponsive Polymer Colloids for Drug Delivery and Cancer Therapy. Macromol. Biosci. 2011, 11, 1722–1734. DOI: 10.1002/mabi.201100252.
  • Picos-Corrales, L. A.; Garcia-Carrasco, M.; Licea-Claverie, A.; Chavez-Santoscoy, R. A.; Serna-Saldívar, S. O. NIPAAm-Containing Amphiphilic Block Copolymers with Tailored LCST: Aggregation Behavior, Cytotoxicity and Evaluation as Carriers of Indomethacin, Tetracycline and Doxorubicin. J. Macromol. Sci. Part A 2019, 56, 759–772.
  • Li, R.; Xie, Y. Nanodrug Delivery Systems for Targeting the Endogenous Tumor Microenvironment and Simultaneously Overcoming Multidrug Resistance Properties. J. Control. Release 2017, 251, 49–67. DOI: 10.1016/j.jconrel.2017.02.020.
  • Guo, X.; Cheng, Y.; Zhao, X.; Luo, Y.; Chen, J.; Yuan, W. E. Advances in Redox-Responsive Drug Delivery Systems of Tumor Microenvironment. J. Nanobiotechnol. 2018, 16, 74. DOI: 10.1186/s12951-018-0398-2.
  • Pillarisetti, S.; Maya, S.; Sathianarayanan, S.; Jayakumar, R. Tunable pH and Redox-Responsive Drug Release from Curcumin Conjugated γ-Polyglutamic Acid Nanoparticles in Cancer Microenvironment. Colloids Surf. B Biointerfaces 2017, 159, 809–819. DOI: 10.1016/j.colsurfb.2017.08.057.
  • Zhang, Y.; Peng, L.; Chu, J.; Zhang, M.; Sun, L.; Zhong, B.; Wu, Q. pH and Redox Dual-Responsive Copolymer Micelles with Surface Charge Reversal for Co-Delivery of All-Trans-Retinoic Acid and Paclitaxel for Cancer Combination Chemotherapy. Int. J. Nanomedicine 2018, 13, 6499–6515.
  • Lin, Y. K.; Yu, Y. C.; Wang, S. W.; Lee, R. S. Temperature, Ultrasound and Redox Triple-Responsive Poly(N-Isopropylacrylamide) Block Copolymer: Synthesis, Characterization and Controlled Release. RSC Adv. 2017, 7, 43212–43226. DOI: 10.1039/C7RA06825E.
  • Poddar, P.; Maity, P.; Maiti, S.; Sahoo, S.; Dhara, S.; Dhara, D. Synthesis of a New Triple-Responsive Biocompatible Block Copolymer: Self-Assembled Nanoparticles as Potent Anticancer Drug Delivery Vehicle. React. Funct. Polym. 2020, 154, 104679. DOI: 10.1016/j.reactfunctpolym.2020.104679.
  • Sahoo, S.; Maiti, S.; Poddar, P.; Dhara, D. Cationic Cross-Linked Polymers Containing Labile Disulfide and Boronic Ester Linkages for Effective Triple Responsive DNA Release. Colloids Surf. B Biointerfaces 2020, 191, 110988. DOI: 10.1016/j.colsurfb.2020.110988.
  • Yin-Ku, L.; Shiu-Wei, W.; Ren-Shen, L. Photo and Redox Dual-Stimuli-Responsive β-Cyclodextrin-Ferrocene Supramolecules for Drug Delivery. J. Macromol. Sci. Part A 2020. DOI: 10.1080/10601325.2020.1814158.
  • Stubbs, E.; Laskowski, E.; Conor, P.; Heinze, D. A.; Karis, D.; Glogowski, E. M. Control of pH- and Temperature-Responsive Behaviour of mPEG-b-PDMAEMA Copolymers through Polymer Composition. J. Macromol. Sci. Part A 2017, 54, 228–235.
  • Zhang, Q.; Lei, L.; Zhu, S. Gas-Responsive Polymers. ACS Macro Lett. 2017, 6, 515–522.
  • Hu, J.; Zhang, G.; Liu, S. Enzyme-Responsive Polymeric Assemblies, Nanoparticles and Hydrogels. Chem. Soc. Rev. 2012, 41, 5933–5949. DOI: 10.1039/c2cs35103j.
  • Cai, X.; Jiang, Y.; Lin, M.; Zhang, J.; Guo, H.; Yang, F.; Leung, W.; Xu, C. Ultrasound-Responsive Materials for Drug/Gene Delivery. Front. Pharmacol. 2019, 10, 1650. DOI: 10.3389/fphar.2019.01650.
  • Li, L.; Scheiger, J. M.; Levkin, P. A. Design and Applications of Photoresponsive Hydrogels. Adv. Mater. 2019, 31, 1807333.
  • Hua, S.; de Matos, M. B. C.; Metselaar, J. M.; Storm, G. Current Trends and Challenges in the Clinical Translation of Nanoparticulate Nanomedicines: Pathways for Translational Development and Commercialization. Front Pharmacol. 2018, 9, 1–14.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.