469
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Fabrication, thermal and in vitro behaviors of ciprofloxacin loaded β-cyclodextrin-PEG based polyurethanes as potential biomaterial for wound dressing applications

, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 329-345 | Received 11 Nov 2021, Accepted 23 Feb 2022, Published online: 10 Mar 2022

References

  • Muñoz-Bonilla, A.; Fernández-García, M. Polymeric Materials with Antimicrobial Activity. Prog. Polym. Sci. 2012, 37, 281–339. DOI: 10.1016/j.progpolymsci.2011.08.005.
  • Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Okoh, A. Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications. Molecules. 2018, 23, 795. DOI: 10.3390/molecules23040795.
  • Keskin, D.; Zu, G.; Forson, A. M.; Tromp, L.; Sjollema, J.; van Rijn, P. Nanogels: A Novel Approach in Antimicrobial Delivery Systems and Antimicrobial Coatings. Bioact. Mater. 2021, 6, 3634–3657. DOI: 10.1016/j.bioactmat.2021.03.004.
  • Thompson, R. C.; Moore, C. J.; Vom Saal, F. S.; Swan, S. H. Plastics, the Environment and Human Health: Current Consensus and Future Trends. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 2153–2166. DOI: 10.1098/rstb.2009.0053.
  • Ojeda, T. Polymers and the Environment. In Polymer Science; Yılmaz, F., Ed.; IntechOpen: London, UK, 2013, pp 1–34. DOI: 10.5772/51057.
  • Okan, M.; Aydin, H. M.; Barsbay, M. Current Approaches to Waste Polymer Utilization and Minimization: A Review. J. Chem. Technol. Biotechnol. 2019, 94, 8–21. DOI: 10.1002/jctb.5778.
  • Ignatyev, I. A.; Thielemans, W.; Vander Beke, B. Recycling of Polymers: A Review. ChemSusChem. 2014, 7, 1579–1593. DOI: 10.1002/cssc.201300898.
  • Luzi, F.; Torre, L.; Kenny, J. M.; Puglia, D. Bio- and Fossil-Based Polymeric Blends and Nanocomposites for Packaging: Structure-Property Relationship. Materials (Basel), 2019, 12, 471. DOI: 10.3390/ma12030471.
  • Gironi, F.; Piemonte, V. Bioplastics and Petroleum-Based Plastics: Strengths and Weaknesses. Energy Sources, Part A. 2011, 33, 1949–1959. DOI: 10.1080/15567030903436830.
  • Lligadas, G.; Ronda, J. C.; Galià, M.; Cádiz, V. Renewable Polymeric Materials from Vegetable Oils: A Perspective. Mater. Today. 2013, 16, 337–343. DOI: 10.1016/j.mattod.2013.08.016.
  • Mozetič, M. Surface Modification to Improve Properties of Materials. Materials (Basel). 2019, 12, 441. DOI: 10.3390/ma12030441.
  • Saba, N.; Tahir, P. M.; Jawaid, M. A Review on Potentiality of Nano Filler/Natural Fiber Filled Polymer Hybrid Composites. Polymers. 2014, 6, 2247–2273. DOI: 10.3390/polym6082247.
  • Mülhaupt, R. Green Polymer Chemistry and Bio‐Based Plastics: Dreams and Reality. Macromol. Chem. Phys. 2013, 214, 159–174. DOI: 10.1002/macp.201200439.
  • Peniche, C.; Argüelles-Monal, W.; Goycoolea, F. M. Chapter 25 - Chitin and Chitosan: Major Sources, Properties and Applications. In Monomers, Polymers and Composites from Renewable Resources; Belgacem, M. N.; Gandini, A., Eds.; Elsevier: Amsterdam, Netherlands, 2008; pp 517–542.
  • Albuquerque, P. B. S.; Coelho, L. C. B. B.; Teixeira, J. A.; Carneiro-da-Cunha, M. G. Approaches in Biotechnological Applications of Natural Polymers. AIMS Mol. Sci. 2016, 3, 386–425. DOI: 10.3934/molsci.2016.3.386.
  • Macocinschi, D.; Filip, D.; Vlad, S.; Tuchilus, C. G.; Cristian, A. F.; Barboiu, M. Polyurethane/β-Cyclodextrin/Ciprofloxacin Composite Films for Possible Medical Coatings with Antibacterial Properties. J. Mater. Chem. B. 2014, 2, 681–690. DOI: 10.1039/c3tb21361g.
  • Konieczny, J.; Loos, K., Green Polyurethanes from Renewable Isocyanates and Biobased White Dextrins, Polymers. 2019, 11, 1–10. DOI: 10.3390/polym11020256.
  • Garcia, H.; Barros, A. S.; Gonçalves, C.; Gama, F. M.; Gil, A. M. Characterization of Dextrin Hydrogels by FTIR Spectroscopy and Solid State NMR Spectroscopy. Eur. Polym. J. 2008, 44, 2318–2329. DOI: 10.1016/j.eurpolymj.2008.05.013.
  • Hirst, D. H.; Chicco, D.; German, L.; Duncan, R. Dextrins as Potential Carriers for Drug Targeting: Tailored Rates of Dextrin Degradation by Introduction of Pendant Groups. Int. J. Pharm. 2001, 230, 57–66. DOI: 10.1016/S0378-5173(01)00859-6.
  • Silva, D. M.; Nunes, C.; Pereira, I.; Moreira, A. S. P.; Domingues, M. R. M.; Coimbra, M. A.; Gama, F. M. Structural Analysis of Dextrins and Characterization of Dextrin-Based Biomedical Hydrogels. Carbohydr. Polym. 2014, 114, 458–466. DOI: 10.1016/j.carbpol.2014.08.009.
  • Carvalho, J.; Goncalves, C.; Gil, A. M.; Gama, F. M. Production and Characterization of a New Dextrin Based Hydrogel. Eur. Polym. J. 2007, 43, 3050–3059. DOI: 10.1016/j.eurpolymj.2007.02.046.
  • Chung, J. H.; Choi, H.; Chun, B. C. Shape-Memory Effects of Polyurethane Copolymer Cross-Linked by Dextrin. J. Mater. Sci. 2008, 43, 6366–6373. DOI: 10.1007/s10853-008-2916-3.
  • Ding, X.; Li, L.; Liu, P.-s.; Zhang, J.; Zhou, N.-l.; Lu, S.; Wei, S.-h.; Shen, J. The Preparation and Properties of Dextrin-Graft-Acrylic Acid/Montmorillonite Superabsorbent Nanocomposite. Polym. Compos. 2009, 30, 976–981. DOI: 10.1002/pc.20643.
  • Carvalho, J.; Coimbra, M. A.; Gama, F. M. New Dextrin-Vinylacrylate Hydrogel: Studies on Protein Diffusion and Release. Carbohydr. Polym. 2009, 75, 322–327. DOI: 10.1016/j.carbpol.2008.07.033.
  • Das, D.; Das, R.; Ghosh, P.; Dhara, S.; Panda, A. B.; Pal, S. Dextrin Cross Linked with Poly(HEMA): A Novel Hydrogel for Colon Specific Delivery of Ornidazole. RSC Adv. 2013, 3, 25340–25350. DOI: 10.1039/c3ra44716b.
  • Das, D.; Pal, S. Dextrin/Poly (HEMA): pH Responsive Porous Hydrogel for Controlled Release of Ciprofloxacin. Int. J. Biol. Macromol. 2015, 72, 171–178. DOI: 10.1016/j.ijbiomac.2014.08.007.
  • Kim, C. H.; Abhari, A. R.; Jeong, Y. B.; Youn, H. J.; Kim, Y. S.; Lee, H. L. Dextrin-Poly(Acrylic Acid) Copolymer as an Additive for Surface Sizing with Oxidized Starch - Effect on Viscosity and Retrogradation. JKTAPPI. 2017, 49, 5–12. DOI: 10.7584/JKTAPPI.2017.04.49.2.5.
  • Das, D.; Ghosh, P.; Dhara, S.; Panda, A. B.; Pal, S. Dextrin and Poly(Acrylic Acid)-Based Biodegradable, Non-Cytotoxic, Chemically Cross-Linked Hydrogel for Sustained Release of Ornidazole and Ciprofloxacin. ACS Appl. Mater. Interfaces. 2015, 7, 4791–4803. DOI: 10.1021/am508712e.
  • Xu, W.; Li, X.; Wang, L.; Li, S.; Chu, S.; Wang, J.; Li, Y.; Hou, J.; Luo, Q.; Liu, J. Design of Cyclodextrin-Based Functional Systems for Biomedical Applications. Front. Chem., 2021, 9, 635507. DOI: 10.3389/fchem.2021.635507.
  • Liu, L.; Guo, Q.-X. The Driving Forces in the Inclusion Complexation of Cyclodextrins. J. Inclusion Phenom. Macrocycl. Chem. 2002, 42, 1–14. DOI: 10.1023/A:1014520830813.
  • Chen, G.; Jiang, M. Cyclodextrin-Based Inclusion Complexation Bridging Supramolecular Chemistry and Macromolecular Self-Assembly. Chem. Soc. Rev. 2011, 40, 2254–2266. DOI: 10.1039/c0cs00153h.
  • Arslan, M.; Sanyal, R.; Sanyal, A. Cyclodextrin Embedded Covalently Crosslinked Networks: Synthesis and Applications of Hydrogels with Nano-Containers. Polym. Chem. 2020, 11, 615–629. DOI: 10.1039/C9PY01679A.
  • Dong, Z.; Luo, Q.; Liu, J. Artificial Enzymes Based on Supramolecular Scaffolds. Chem. Soc. Rev. 2012, 41, 7890–7908. DOI: 10.1039/c2cs35207a.
  • Moreira, M. P.; Andrade, G. R. S.; de Araujo, M. V. G.; Kubota, T.; Gimenez, I. F. Ternary Cyclodextrin Polyurethanes Containing Phosphate Groups: Synthesis and Complexation of Ciprofloxacin. Carbohydr. Polym. 2016, 20, 557–564. DOI: 10.1016/j.carbpol.2016.05.101.
  • Macocinschi, D.; Filip, D.; Vlad, S.; Cernatescu, C.; Tuchilus, C. G.; Gafitanu, C. A.; Dumitriu, R. P. Electrospun/Electrosprayed Polyurethane Biomembranes with Ciprofloxacin and Clove Oil Extract for Urinary Devices. J. Bioact. Compat. Polym. 2015, 30, 509–523. DOI: 10.1177/0883911515581508.
  • Du, J.; Gan, S.; Bian, Q.; Fu, D.; Wei, Y.; Wang, K.; Lin, Q.; Chen, W.; Huang, D. Preparation and Characterization of Porous Hydroxyapatite/β-Cyclodextrin-Based Polyurethane Composite Scaffolds for Bone Tissue Engineering. J. Biomater. Appl. 2018, 33, 402–409. DOI: 10.1177/0885328218797545.
  • Ates, B.; Koytepe, S.; Karaaslan, M. G.; Balcioglu, S.; Gulgen, S.; Demirbilek, M.; Denkbas, E. B. Chlorogenic Acid Containing Bioinspired Polyurethanes: Biodegradable Medical Adhesive Materials. Int. J. Polym. Mater. Polym. Biomater. 2015, 64, 611–619. DOI: 10.1080/00914037.2014.996710.
  • Balcioglu, S.; Parlakpinar, H.; Vardi, N.; Denkbas, E. B.; Karaaslan, M. G.; Gulgen, S.; Taslidere, E.; Koytepe, S.; Ates, B. Design of Xylose-Based Semisynthetic Polyurethane Tissue Adhesives with Enhanced Bioactivity Properties. ACS Appl. Mater. Interfaces. 2016, 8, 4456–4466. DOI: 10.1021/acsami.5b12279.
  • Chen, Y.; Yan, J.; Zhang, Y.; Chen, W.; Wang, Z.; Wang, L. Synthesis, Characterization and Antibacterial Activity of Novel β‑Cyclodextrin Polyurethane Materials. J. Polym. Environ. 2022, 30, 1012–1027. DOI: 10.1007/s10924-021-02255-7.
  • Akçakoca Kumbasar, E. P.; Akduman, C.; Cay, A. Effects of β-Cyclodextrin on Selected Properties of Electrospun Thermoplastic Polyurethane Nanofibres. Carbohydr. Polym. 2014, 104, 42–49. DOI: 10.1016/j.carbpol.2013.12.065.
  • Chen, Y.; Xie, A.; Zhang, M.; Inoue, S. I. Influences of Polyol on the Chemical, Thermal, and Mechanical Properties of Polyurethane Elastomers Crosslinked by β-Cyclodextrin. OJOPM. 2017, 07, 29–46. DOI: 10.4236/ojopm.2017.73003.
  • Vélaz, I.; Isasi, J. R.; Sánchez, M.; Uzqueda, M.; Ponchel, G. Structural Characteristics of Some Soluble and Insoluble β-Cyclodextrin Polymers. J. Incl. Phenom. Macrocycl. Chem. 2007, 57, 65–68. DOI: 10.1007/s10847-006-9221-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.