104
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Radiation facilitated-immobilized lipase (RaFIL) mini biocatalytic reactor based on epoxy decorated PP tubes: Rapid colorimetric estimation of pesticide Chlorpyrifos

, , , , &
Pages 575-586 | Received 16 Mar 2022, Accepted 03 May 2022, Published online: 18 Jul 2022

References

  • Cleland, M. R.; Parks, L. A.; Cheng, S. Applications for Radiation Processing of Materials. Nucl. Instrum. Methods Phys. Res, Sect. B. 2003, 208, 66–73. DOI: 10.1016/S0168-583X(03)00655-4.
  • Silverman, J. Radiation Processing: The Industrial Applications of Radiation Chemistry. J. Chem. Educ. 1981, 58, 168. DOI: 10.1021/ed058p168.
  • Bhattacharya, A.; Rawlins, J. W.; Ray, P. Polymer Grafting and Crosslinking, Wiley, USA, 2008.
  • Kumar, V.; Bhardwaj, Y. K.; Rawat, K. P.; Sabharwal, S. Radiation-Induced Grafting of Vinylbenzyltrimethylammonium Chloride (VBT) onto Cotton Fabric and Study of Its Anti-Bacterial Activities. Radiat. Phys. Chem. 2005, 73, 175–182. DOI: 10.1016/j.radphyschem.2004.08.011.
  • Nasef, M. M.; Sugiarmawan, I. A. Radiation Induced Emulsion Grafting of Glycidyl Methacrylate onto High Density Polyethylene: A Kinetic Study. Mal. J. Fund. Appl. Sci. 2010, 6, 93–97. DOI: 10.11113/mjfas.v6n2.189.
  • Kumar, V.; Misra, N.; Paul, J.; Dhanawade, B. R.; Varshney, L. Uricase-Immobilization on Radiation Grafted Polymer Support for Detection of Uric Acid Using Ag-Nanoparticle Based Optical Biosensor. Polymer. 2014, 55, 2652–2660. DOI: 10.1016/j.polymer.2014.04.012.
  • Seko, N.; Bang, L. T.; Tamada, M. Syntheses of Amine-Type Adsorbents with Emulsion Graft Polymerization of Glycidyl Methacrylate. Nucl. Instrum. Methods Phys. Res, Sect. B. 2007, 265, 146–149. DOI: 10.1016/j.nimb.2007.08.041.
  • Kim, M.; Saito, K. Radiation-Induced Graft Polymerization and Sulfonation of Glycidyl Methacrylate on to Porous Hollow-Fiber Membranes with Different Pore Sizes. Radiat. Phys. Chem. 2000, 57, 167–172. DOI: 10.1016/S0969-806X(99)00314-X.
  • Kim, M.; Kiyohara, S.; Konishi, S.; Tsuneda, S.; Saito, K.; Sugo, T. Ring-Opening Reaction of Poly-GMA Chain Grafted onto a Porous Membrane. J. Membr. Sci. 1996, 117, 33–38. DOI: 10.1016/0376-7388(96)00026-9.
  • Kiyohara, S.; Sasaki, M.; Saito, K.; Sugita, K.; Sugo, T. Radiation-Induced Grafting of Phenylalanine-Containing Monomer onto a Porous Membrane. Reac. Func. Polym. 1996, 31, 103–110. DOI: 10.1016/1381-5148(96)00035-1.
  • Galli, P.; Vecellio, G. Polyolefins: The Most Promising Large-Volume Materials for the 21st Century. J. Polym. Sci. A Polym. Chem. 2004, 42, 396–415. DOI: 10.1002/pola.10804.
  • Cao, C.; Zou, J.; Dong, J. Y.; Hu, Y.; Chung, T. C. Synthesis of Polypropylene Graft Copolymers by the Combination of a Polypropylene Copolymer Containing Pendant Vinylbenzene Groups and Atom Transfer Radical Polymerization. J. Polym. Sci. A Polym. Chem. 2005, 43, 429–437. DOI: 10.1002/pola.20509.
  • Xu, G.; Lin, S. Functional Modification of Polypropylene. J. Macromol. Sci. C. 1994, 34, 555–606. DOI: 10.1080/15321799408014167.
  • Acik, G.; Tasdelen, M. A. Graft Copolymers from Commercial Chlorinated Polypropylene via Cu(0)-Mediated Atom Transfer Radical Polymerization. Polym. Int. 2016, 65, 1458–1463. DOI: 10.1002/pi.5202.
  • Acik, G.; Altinkok, C.; Olmez, H.; Tasdelen, M. A. Antibacterial Film from Chlorinated Polypropylene via CuAAC Click Chemistry. Prog. Org. Coat. 2018, 125, 73–78. DOI: 10.1016/j.porgcoat.2018.08.029.
  • Kumar, V.; Misra, N.; Goel, N. K.; Thakar, R.; Gupta, J.; Varshney, L. A Horseradish Peroxidase Immobilized Radiation Grafted Polymer Matrix: A Biocatalytic System for Dye Waste Water Treatment. RSC Adv. 2016, 6, 2974–2981. DOI: 10.1039/C5RA20513A.
  • Datta, S.; Christena, L. R.; Rajaram, Y. R. S. Enzyme Immobilization: An Overview on Techniques and Support Materials. 3 Biotech. 2013, 3, 1–9. DOI: 10.1007/s13205-012-0071-7.
  • Ali Khan, A.; Alzohairy, M. A. Recent Advances and Applications of Immobilized Enzyme Technologies: A Review. Res. J. Biol. Sci. 2010, 5, 565–575. DOI: 10.3923/rjbsci.2010.565.575.
  • DiCosimo, R.; McAuliffe, J.; Poulose, A. J.; Bohlmann, G. Industrial Use of Immobilized Enzymes. Chem Soc Rev. 2013, 42, 6437–6474. DOI: 10.1039/c3cs35506c.
  • Castilla, I. A.; Woods, D. F.; Reen, F. J.; O’Gara, F. Harnessing Marine Biocatalytic Reservoirs for Green Chemistry Applications through Metagenomic Technologies. Mar. Drugs. 2018, 16, 227. DOI: 10.3390/md16070227.
  • Ferreira-Leitão, V. S.; Cammarota, M. C.; Gonçalves Aguieiras, E. C.; Vasconcelos de Sá, L. R.; Fernandez-Lafuente, R.; Freire, D. M. The Protagonism of Biocatalysis in Green Chemistry and Its Environmental Benefits. Catalysts. 2017, 7, 9. DOI: 10.3390/catal7010009.
  • Dumri, K.; Hung Anh, D. Immobilization of Lipase on Silver Nanoparticles via Adhesive Polydopamine for Biodiesel Production. Enzyme Res. 2014, 2014, 389739. DOI: 10.1155/2014/389739.
  • Rosa, C. M. R.; Silva, M. V. C.; Aguiar, L. G.; Castro, H. F.; Freitas, L. Prediction and Comparison of Textural Properties of Magnetic Copolymer Supports for Enzyme Immobilization. J. Appl. Polym. Sci. 2020, 137, 49258. DOI: 10.1002/app.49258.
  • Cao, S.-L.; Huang, Y.-M.; Li, X.-H.; Xu, P.; Wu, H.; Li, N.; Lou, W.-Y.; Zong, M.-H. Preparation and Characterization of Immobilized Lipase from Pseudomonas Cepacia onto Magnetic Cellulose Nanocrystals. Sci. Report. 2016, 6, 20420. DOI: 10.1038/srep20420.
  • Arana-Peña, S.; Rios, N. S.; Carballares, D.; Mendez-Sanchez, C.; Lokha, Y.; Gonçalves, L. R. B.; Fernandez-Lafuente, R. Effects of Enzyme Loading and Immobilization Conditions on the Catalytic Features of Lipase from Pseudomonas Fluorescens Immobilized on Octyl-Agarose Beads. Front. Bioeng. Biotechnol. 2020, 8, 36. DOI: 10.3389/fbioe.2020.00036.
  • Misra, N.; Kumar, V.; Goel, N. K.; Varshney, L. Laccase Immobilization on Radiation Synthesized Epoxy Functionalized Polyethersulfone Beads and Their Application for Degradation of Acid Dye. Polymer. 2014, 55, 6017–6024. DOI: 10.1016/j.polymer.2014.09.035.
  • Misra, N.; Goel, N. K.; Shelkar, S. A.; Varshney, L.; Kumar, V. Catalase Immobilized-Radiation Grafted Functional Cellulose Matrix: A Novel Biocatalytic System. J. Mol. Catal. B: Enzym. 2016, 133, S172–S178. DOI: 10.1016/j.molcatb.2017.01.001.
  • Rodrigues, R. C.; Virgen-Ortíz, J. J.; dos Santos, J. C. S.; Berenguer-Murcia, Á.; Alcantara, A. R.; Barbosa, O.; Ortiz, C.; Fernandez-Lafuente, R. Immobilization of Lipases on Hydrophobic Supports: Immobilization Mechanism, Advantages, Problems, and Solutions. Biotechnol. Adv. 2019, 37, 746–770. DOI: 10.1016/j.biotechadv.2019.04.003.
  • Sankar, K.; Lenisha, D.; Janaki, G.; Juliana, J.; Kumar, R. S.; Selvi, M. C.; Srinivasan, G. Digital Image-Based Quantification of Chlorpyrifos in Water Samples Using a Lipase Embedded Paper Based Device. Talanta. 2020, 208, 120408. DOI: 10.1016/j.talanta.2019.120408.
  • Pohanka, M. Biosensors and Bioassays Based on Lipases, Principles and Applications, a Review. Molecules. 2019, 24, 616. DOI: 10.3390/molecules24030616.
  • Rathod, A. L.; Garg, R. K. Chlorpyrifos Poisoning and Its Implications in Human Fatal Cases: A Forensic Perspective with Reference to Indian Scenario. J. Forensic Leg. Med. 2017, 47, 29–34. DOI: 10.1016/j.jflm.2017.02.003.
  • Kim, D. Y.; Cha, J. H.; Seo, K. H. Effects of Chain Extender on Properties and Foaming Behavior of Polypropylene Foam. RSC Adv 2019, 9, 25496–25507. DOI: 10.1039/c9ra04824c.
  • Bradford, M. M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. DOI: 10.1016/0003-2697(76)90527-3.
  • Rath, S. K.; Palai, A.; Rao, S.; Chandrasekhar, L.; Patri, M. Effect of Solvents in Radiation-Induced Grafting of 4-Vinyl Pyridine onto Fluorinated Ethylene Propylene Copolymer. J. Appl. Polym. Sci. 2008, 108, 4065–4071. DOI: 10.1002/app.28022.
  • Costa, L. C.; Monteiro, R. C.; Castro, H. M. A.; Ribeiro, T. S.; Oliveira, M. A.; Torquato, E. C. C.; Arcanjo, M. E.; Marques, M. R. C. Glycidyl Methacrylate-Ethylene Glycol Dimethacrylate Copolymers with Varied Pore Structures Prepared with Different Reaction Parameters. Mat. Res. 2020, 23, e20190550. DOI: 10.1590/1980-5373-mr-2019-0550.
  • Szabó, T.; Berkesi, O.; Forgó, P.; Josepovits, K.; Sanakis, Y.; Petridis, D.; Dékány, I. Evolution of Surface Functional Groups in a Series of Progressively Oxidized Graphite Oxides. Chem. Mater. 2006, 18, 2740–2749. DOI: 10.1021/cm060258.
  • Bondar, Y. V.; Kim, H. J.; Lim, Y. J. Sulfonation of (Glycidyl Methacrylate) Chains Grafted onto Nonwoven Polypropylene. J. Appl. Polym. Sci. 2007, 104, 3256–3260. DOI: 10.1002/app.25887.
  • Zulfiqar, S.; Zulfiqar, M.; Nawaz, M.; McNeill, I. C.; Gorman, J. G. Thermal Degradation of Poly(Glycidyl Methacrylate). Polym. Degrad. Stab. 1990, 30, 195–203. DOI: 10.1016/0141-3910(90)90075-I.
  • Cherifi, Z.; Boukoussa, B.; Zaoui, A.; Belbachir, M.; Meghabar, R. Structural, Morphological and Thermal Properties of Nanocomposites Poly(GMA)/Clay Prepared by Ultrasound and in-Situ Polymerization. Ultrason Sonochem. 2018, 48, 188–198. DOI: 10.1016/j.ultsonch.2018.05.027.
  • Svoboda, P.; Trivedi, K.; Stoklasa, K.; Svobodova, D.; Ougizawa, T. Study of Crystallization Behaviour of Electron Beam Irradiated Polypropylene and High-Density Polyethylene. R. Soc. Open Sci. 2021, 8, 202250. DOI: 10.1098/rsos.202250.
  • Verger, R. Interfacial Activation of Lipases: Facts and Artifacts. Trends. Biotechnol. 1997, 15, 32–83. DOI: 10.1016/S0167-7799(96)10064-0.
  • Reetz, M. T. Entrapment of Biocatalysts in Hydrophobic Sol-Gel Materials for Use in Organic Chemistry. Adv. Mater 1997, 9, 943–954. DOI: 10.1002/adma.19970091203.
  • Mateo, C.; Abian, O.; Fernandez-Lorente, G.; Pessela, B. C. C.; Grazu, V.; Guisan, J. M. Multi-Point Covalent Immobilization of Enzymes on Supports Activated with Epoxy Groups: Stabilization of Industrial Enzymes. In: Guisan J., Bolivar J., López-Gallego F., Rocha-Martín J. (eds) Immobilization of Enzymes and Cells. Methods in Molecular Biology, 2020, vol. 2100. Humana, New York, NY. DOI: 10.1007/978-1-0716-0215-7_6.
  • Mateo, C.; Grazú, V.; Pessela, B. C. C.; Montes, T.; Palomo, J. M.; Torres, R.; López-Gallego, F.; Fernández-Lafuente, R.; Guisán, J. M. Advances in the Design of New Epoxy Supports for Enzyme Immobilization–Stabilization. Biochem Soc Trans. 2007, 35, 1593–1601. DOI: 10.1042/BST0351593.
  • Kołodziejczak-Radzimska, A.; Ciesielczyk, F.; Jesionowski, T. A Novel Biocatalytic System Obtained via Immobilization of Aminoacylase onto Sol–Gel Derived ZrO2·SiO2 Binary Oxide Material: physicochemical Characteristic and Catalytic Activity Study. Adsorption. 2019, 25, 855–864. DOI: 10.1007/s10450-019-00085-7.
  • Lee, J. H.; Kim, S. B.; Park, C.; Kim, S. W. Effect of a Buffer Mixture System on the Activity of Lipases during Immobilization Process. Biores. Technol. 2010, 101, S66–S70. DOI: 10.1016/j.biortech.2009.03.031.
  • Essa, H.; Magner, E.; Cooney, J.; Hodnett, B. K. Influence of pH and Ionic Strength on the Adsorption, Leaching and Activity of Myoglobin Immobilized onto Ordered Mesoporous Silicates. J. Mol. Catal. B: Enzyme. 2007, 49, 61–68. DOI: 10.1016/j.molcatb.2007.07.005.
  • Manoel, E. A.; dos Santos, J. C. S.; Freire, D. M. G.; Rueda, N.; Fernandez-Lafuente, R. Immobilization of Lipases on Hydrophobic Supports Involves the Open Form of the Enzyme. Enz. Microb. Technol. 2015, 71, 53–57. DOI: 10.1016/j.enzmictec.2015.02.001.
  • Prodanović, R.; Jovanović, S.; Vujčić, Z. Immobilization of Invertase on a New Type of Macroporous Glycidyl Methacrylate. Biotechnol. Lett. 2001, 23, 1171–1174. . DOI: 10.1023/A:1010560911400.
  • Liu, Y.; Zeng, Z.; Zeng, G.; Tang, L.; Pang, Y.; Li, Z.; Liu, C.; Lei, X.; Wu, M.; Ren, P.; et al. Immobilization of Laccase on Magnetic Bimodal Mesoporous Carbon and the Application in the Removal of Phenolic Compounds. Bioresour Technol. 2012, 115, 21–26. DOI: 10.1016/j.biortech.2011.11.015.
  • Deshmukh, S. S.; Dutta Choudhury, M.; Shankar, V. Preparation and Properties of Glucose Isomerase Immobilized on Indion 48-R. Appl. Biochem. Biotechnol. 1993, 42, 95–104. DOI: 10.1007/BF02788045.
  • Venkateswara Rao, J.; Kavitha, P. In Vitro Effects of Chlorpyrifos on the Acetylcholinesterase Activity of Euryhaline Fish, Oreochromis Mossambicus. Zeitschrift Für Naturforschung C. 2010, 65, 303–306. DOI: 10.1515/znc-2010-3-420.
  • Bašica, B.; Mihaljević, I.; Maraković, N.; Kovačević, R.; Smital, T. Molecular Characterization of Zebrafish Gstr1, the Only Member of Teleost-Specific Glutathione S- Transferase Class. Aquat. Toxicol. 2019, 208, 196–207. DOI: 10.1016/j.aquatox.2019.01.005.
  • Nana, L.; Ruiyi, L.; Qinsheng, W.; Yongqiang, Y.; Xiulan, S.; Guangli, W.; Zaijun, L. Colorimetric Detection of Chlorpyrifos in Peach Based on Cobalt-Graphene Nanohybrid with Excellent Oxidase-like Activity and Reusability. J. Hazard Mater. 2021, 415, 125752. DOI: 10.1016/j.jhazmat.2021.125752.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.