241
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Thermoresponsive oligo(ethylene glycol) methyl ether methacrylate homopolymers via RAFT polymerization in 1-alkyl-3-methylimidazolium hexafluorophosphate ionic liquids

, , ORCID Icon, &
Pages 764-773 | Received 06 Jun 2022, Accepted 19 Aug 2022, Published online: 01 Sep 2022

References

  • Roy, I.; Gupta, M. N. Smart Polymeric Materials. Chem. Biol. 2003, 10, 1161–1171.
  • Van Gheluwe, L.; Chourpa, I.; Gaigne, C.; Munnier, E. Polymer-Based Smart Drug Delivery Systems for Skin Application and Demonstration of Stimuli-Responsiveness. Polymers 2021, 13, 1285. DOI: 10.3390/polym13081285.
  • Cook, A. B.; Perrier, S. Branched and Dendritic Polymer Architectures: Functional Nanomaterials for Therapeutic Delivery. Adv. Funct. Mater. 2019, 30, 1901001. DOI: 10.1002/adfm.201901001.
  • Lutz, J.-F.; Akdemir, Ö.; Hoth, A. Point by Point Comparison of Two Thermosensitive Polymers Exhibiting a Similar LCST: Is the Age of Poly(Nipam) over? J. Am. Chem. Soc. 2006, 128, 13046–13047.
  • Lutz, J.-F. Polymerization of Oligo(Ethylene Glycol) (Meth)Acrylates: Toward New Generations of Smart Biocompatible Materials. J. Polym. Sci. A Polym. Chem. 2008, 46, 3459–3470. DOI: 10.1002/pola.22706.
  • Asadian-Birjand, M.; Bergueiro, J.; Rancan, F.; Cuggino, J. C.; Mutihac, R.-C.; Achazi, K.; Dernedde, J.; Blume-Peytayi, U.; Vogt, A.; Calderón, M. Engineering Thermoresponsive Polyether-Based Nanogels for Temperature Dependent Skin Penetration. Polym. Chem. 2015, 6, 5827–5831. DOI: 10.1039/C5PY00924C.
  • Yamazaki, N.; Sugimoto, T.; Fukushima, M.; Teranishi, R.; Kotaka, A.; Shinde, C.; Kumei, T.; Sumida, Y.; Munekata, Y.; Maruyama, K-i.; et al. Dual-Stimuli Responsive Liposomes Using pH- and Temperature-Sensitive Polymers for Controlled Transdermal Delivery. Polym. Chem. 2017, 8, 1507–1518. DOI: 10.1039/C6PY01754A.
  • Atayde, E. C.; Montalbo, R. C. K.; Arco, S. D. Temperature- and pH-Dependent Drug Release of Block Copolymers of Methacrylic Acid and Poly(Ethylene Glycol) Methyl Ether Methacrylates. Phillip J. Sci. 2018, 147, 363–372.
  • Durga, G.; Kalra, P.; Kumar Verma, V.; Wangdi, K.; Mishra, A. Ionic Liquids: From a Solvent for Polymeric Reactions to the Monomers for Poly(Ionic Liquids). J. Mol. Liq. 2021, 335, 116540. DOI: 10.1016/j.molliq.2021.116540.
  • Puttick, S.; Irvine, D.; Licence, P.; Thurecht, K. RAFT-Functional Ionic Liquids: Towards Understanding Controlled Free Radical Polymerisation in Ionic Liquids. In Advances in Sustainable Polymers; Katiyar, V., Mulchandani, N., Kumar, A., Eds.; Springer Nature Singapore Pte Ltd.: Singapore, 2020; pp 183–193.
  • Perrier, S.; Davis, T. P.; Carmichael, A. J.; Haddleton, D. M. First Report of Reversible Addition–Fragmentation Chain Transfer (Raft) Polymerisation in Room Temperature Ionic Liquids. Chem. Commun. 2002, 19, 2226–2227.
  • Tilottama, B.; Manojkumar, K.; Haribabu, P. M.; Vijayakrishna, K. A Short Review on Raft Polymerization of Less Activated Monomers. J. Macromol. Sci. A 2022, 59, 180–201. DOI: 10.1080/10601325.2021.2024076.
  • Singha, N. K.; Pramanik, N. B.; Behera, P. K.; Chakrabarty, A.; Mays, J. W. Tailor-Made Thermoreversible Functional Polymer via Raft Polymerization in an Ionic Liquid: A Remarkably Fast Polymerization Process. Green Chem. 2016, 18, 6115–6122. DOI: 10.1039/C6GC01677D.
  • Zhou, J.; Zhang, W.; Hong, C.; Pan, C. Promotion of Morphology Transition of Di-Block Copolymer Nano-Objects via Raft Dispersion Copolymerization. Polym. Chem. 2016, 7, 3259–3267. DOI: 10.1039/C6PY00164E.
  • Santha Kumar, A. R. S.; Roy, M.; Singha, N. K. Effect of Ionic Liquids on the Raft Polymerization of Butyl Methacrylate. Eur. Polym. J. 2018, 107, 294–302. DOI: 10.1016/j.eurpolymj.2018.08.018.
  • Santha Kumar, A. R.; Singha, N. K. Raft Polymerization of 2‐Hydroxyethyl Methacrylate in a Deep Eutectic Solvent. J. Polym. Sci. Part A: Polym. Chem. 2019, 57, 2281–2286. DOI: 10.1002/pola.29527.
  • Perez, S. J. L. P.; Arco, S. D. Solvent-Free Sonochemical Synthesis and Antifungal Activity of 1-Alkyl-3-Methylimidazolium Bromide [RMIM]Br Ionic Liquids. J. Chin. Chem. Soc. 2014, 61, 935–939. DOI: 10.1002/jccs.201300555.
  • Perez, S. J. L. P.; Atayde, E. C.; Arco, S. D. Synthesis and Biological Evaluation of Some Novel 1‐Alkyl‐3‐Methylimidazolium Carboxylate Ionic Liquids as Potential Antifungal Agents. J. Chin. Chem. Soc. 2020, 67, 1270–1277. DOI: 10.1002/jccs.201900366.
  • Bursali, E. A.; Syehan Bozkurt, S.; Yurdakoc, M. Impregnation of Different Ionic Liquids onto Cationic Starch and Their Comparison in the Extraction of Th(IV). Turk. J. Chem. 2016, 40, 364–372.
  • Zhang, S.; Chen, Z.; Qi, X.; Deng, Y. District Influence of the Anion and Ether Group on the Polarity of Ammonium and Imidazolium Ionic Liquids. New J. Chem. 2012, 36, 1043–1050. DOI: 10.1039/c2nj20965a.
  • Singh, P. P.; Chauhan, S. M. S. Chemoselective Epoxidation of Electron Rich and Electron Deficient Olefins Catalyzed by Meso-Tetraarylporphyrin Iron(III) Chlorides in Imidazolium Ionic Liquids. New J. Chem 2012, 36, 650–655. DOI: 10.1039/c1nj20739c.
  • Puttick, S.; Irvine, D. J.; Licence, P.; Thurecht, K. J. RAFT-Functional Ionic Liquids: Towards Understanding Controlled Free Radical Polymerisation in Ionic Liquids. J. Mater. Chem. 2009, 19, 2679. DOI: 10.1039/b817181p.
  • Puttick, S.; Davis, A. L.; Butler, K.; Irvine, D. J.; Licence, P.; Thurecht, K. J. The Influence of Domain Segregation in Ionic Liquids upon Controlled Polymerisation Mechanisms: Raft Polymerisation. Polym. Chem. 2013, 4, 1337–1344. DOI: 10.1039/C2PY20835K.
  • Strehmel, V.; Laschewsky, A.; Wetzel, H.; Görnitz, E. Free Radical Polymerization of n-Butyl Methacrylate in Ionic Liquids. Macromolecules 2006, 39, 923–930. DOI: 10.1021/ma0516945.
  • Perrier, S.; Davis, T. P.; Carmichael, A. J.; Haddleton, D. M. Reversible Addition–Fragmentation Chain Transfer Polymerization of Methacrylate, Acrylate and Styrene Monomers in 1-Alkyl-3-Methylimidazolium Hexfluorophosphate. Eur. Polym. J. 2003, 39, 417–422. DOI: 10.1016/S0014-3057(02)00250-1.
  • Boutris, C.; Chatzi, E. G.; Kiparissides, C. Characterization of the LCST Behaviour of Aqueous Poly(n-Isopropylacrylamide) Solutions by Thermal and Cloud Point Techniques. Polymer 1997, 38, 2567–2570. DOI: 10.1016/S0032-3861(97)01024-0.
  • Mannella, G. A.; La Carrubba, V.; Brucato, V. Measurement of Cloud Point Temperature in Polymer Solutions. Rev. Sci. Instrum. 2013, 84, 075118.
  • Xia, Y.; Burke, N. A.; Stöver, H. D. End Group Effect on the Thermal Response of Narrow-Disperse Poly(n-Isopropylacrylamide) Prepared by Atom Transfer Radical Polymerization. Macromolecules 2006, 39, 2275–2283. DOI: 10.1021/ma0519617.
  • Xu, J.; Jung, K.; Atme, A.; Shanmugam, S.; Boyer, C. A Robust and Versatile Photoinduced Living Polymerization of Conjugated and Unconjugated Monomers and Its Oxygen Tolerance. J. Am. Chem. Soc. 2014, 136, 5508–5519. [Database] DOI: 10.1021/ja501745g.
  • Han, S.; Hagiwara, M.; Ishizone, T. Synthesis of Thermally Sensitive Water-Soluble Polymethacrylates by Living Anionic Polymerizations of Oligo(Ethylene Glycol) Methyl Ether Methacrylates. Macromolecules 2003, 36, 8312–8319. DOI: 10.1021/ma0347971.
  • Lietor-Santos, J. J.; Kim, C.; Lynch, M. L.; Fernandez-Nieves, A.; Weitz, D. A. The Role of Polymer Polydispersity in Phase Separation and Gelation in Colloid − Polymer Mixtures. Langmuir 2009, 26, 3174–3178. DOI: 10.1021/la903127a.
  • Das, A.; Petkau-Milroy, K.; Klerks, G.; van Genabeek, B.; Lafleur, R. P.; Palmans, A. R.; Meijer, E. W. Consequences of Dispersity on the Self-Assembly of ABA-Type Amphiphilic Block Co-Oligomers. ACS Macro Lett. 2018, 7, 546–550.
  • Vishwakarma, N. K.; Patel, V. K.; Mitra, P.; Ramesh, K.; Mitra, K.; Vishwakarma, S.; Acharya, K.; Misra, N.; Maiti, P.; Ray, B. Synthesis of ABA-Type Double Hydrophilic Amphiphilic PU-Based Block Copolymers of Poly(n-Vinylpyrrolidone) and Poly(N-Isopropylacrylamide) via Click Chemistry. J. Macromol. Sci. A 2020, 58, 192–205. DOI: 10.1080/10601325.2020.1840920.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.