283
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Folate receptor targeted chitosan and polydopamine coated mesoporous silica nanoparticles for photothermal therapy and drug delivery

, &
Pages 810-817 | Received 05 Jul 2022, Accepted 09 Sep 2022, Published online: 20 Oct 2022

References

  • Zhao, C. Y.; Cheng, R.; Yang, Z.; Tian, Z. M. Nanotechnology for Cancer Therapy Based on Chemotherapy. Molecules 2018, 23, 826. DOI: 10.3390/molecules23040826.
  • Miller, K. D.; Siegel, R. L.; Lin, C. C.; Mariotto, A. B.; Kramer, J. L.; Rowland, J. H.; Stein, K. D.; Alteri; R.; Jemal, A. Cancer Treatment and Survivorship Statistics. CA Cancer J Clin 2016, 66, 271–289. DOI: 10.3322/caac.21349.
  • Behranvand, N.; Nasri, F.; Zolfaghari Emameh, R.; Khani, P.; Hosseini, A.; Garssen, J.; Falak, R. Chemotherapy: A Double-Edged Sword in Cancer Treatment. Cancer Immunol. Immunother. 2022, 71, 507–526. DOI: 10.1007/s00262-021-03013-3.
  • Shi, J.; Kantoff, P. W.; Wooster, R.; Farokhzad, O. C. Cancer Nanomedicine: progress, Challenges and Opportunities. Nat. Rev. Cancer 2017, 17, 20–37. DOI: 10.1038/nrc.2016.108.
  • El-Sawy, H. S.; Al-Abd, A. M.; Ahmed, T. A.; El-Say, K. M.; Torchilin, V. P. Stimuli-Responsive Nano-Architecture Drug-Delivery Systems to Solid Tumor Micromilieu: Past, Present, and Future Perspectives. ACS Nano 2018, 12, 10636–10664. DOI: 10.1021/acsnano.8b06104.
  • Li, L.; Yang, W. W.; Xu, D. G. Stimuli-Responsive Nanoscale Drug Delivery Systems for Cancer Therapy. J. Drug Target 2019, 27, 423–433. DOI: 10.1080/1061186X.2018.1519029.
  • Dai, Y.; Xu, C.; Sun, X.; Chen, X. Nanoparticle Design Strategies for Enhanced Anticancer Therapy by Exploiting the Tumour Microenvironment. Chem. Soc. Rev. 2017, 46, 3830–3852. DOI: 10.1039/c6cs00592f.
  • Fan, W.; Yung, B.; Huang, P.; Chen, X. Nanotechnology for Multimodal Synergistic Cancer Therapy. Chem. Rev. 2017, 117, 13566–13638. DOI: 10.1021/acs.chemrev.7b00258.
  • Rejinold, N. S.; Choi, G.; Choy, J. H. Recent Trends in Nano Photo-Chemo Therapy Approaches and Future Scopes. Coord. Chem. Rev. 2020, 411, 213252. DOI: 10.1016/j.ccr.2020.213252.
  • Cheng, L.; Wang, C.; Feng, L.; Yang, K.; Liu, Z. Functional Nanomaterials for Phototherapies of Cancer. Chem. Rev. 2014, 114, 10869–10939. DOI: 10.1021/cr400532z.
  • Sun, H.; Zhang, Q.; Li, J.; Peng, S.; Wang, X.; Cai, R. Near-Infrared Photoactivated Nanomedicines for Photothermal Synergistic Cancer Therapy. Nano Today 2021, 37, 101073. DOI: 10.1016/j.nantod.2020.101073.
  • Bhartiya, P.; Chawla, R.; Dutta, P. K. pH-Responsive Charge-Convertible N-Succinyl Chitosan-Quercetin Coordination Polymer Nanoparticles for Effective NIR Photothermal Cancer Therapy. Macro Chem. Phys. 2022, 223, 2200140. DOI: 10.1002/macp.202200140.
  • Caddeo, C.; Diez-Sales, O.; Pons, R.; Carbone, C.; Ennas, G.; Puglisi, G.; Fadda, A. M.; Manconi, M. Cross-Linked Chitosan/Liposome Hybrid System for the Intestinal Delivery of Quercetin. J. Colloid Interface Sci. 2016, 461, 69–78. DOI: 10.1016/j.jcis.2015.09.013.
  • Vyas, V. S.; Vishwakarma, M.; Moudrakovski, I.; Haase, F.; Savasci, G.; Ochsenfeld, C.; Spatz, J. P.; Lotsch, B. V. Exploiting Noncovalent Interactions in an Imine-Based Covalent Organic Framework for Quercetin Delivery. Adv. Mater. 2016, 28, 8749–8754. DOI: 10.1002/adma.201603006.
  • Primikyri, A.; Chatziathanasiadou, M. V.; Karali, E.; Kostaras, E.; Mantzaris, M. D.; Hatzimichael, E.; Shin, J. S.; Chi, S. W.; Briasoulis, E.; Kolettas, E.; et al. Direct Binding of Bcl-2 Family Proteins by Quercetin Triggers Its Proapoptotic Activity. ACS Chem. Biol. 2014, 9, 2737–2741. DOI: 10.1021/cb500259e.
  • Cote, B.; Carlson, L. J.; Rao, D. A.; Alani, A. W. G. Combinatorial Resveratrol and Quercetin Polymeric Micelles Mitigate Doxorubicin Induced Cardiotoxicity in Vitro and in Vivo. J. Control Release 2015, 213, 128–133. DOI: 10.1016/j.jconrel.2015.06.040.
  • Summerlin, N.; Qu, Z.; Pujara, N.; Sheng, Y.; Jambhrunkar, S.; McGuckin, M.; Popat, A. Colloidal Mesoporous Silica Nanoparticles Enhance the Biological Activity of Resveratrol. Colloids Surf. B Biointerfaces 2016, 144, 1–7. DOI: 10.1016/j.colsurfb.2016.03.076.
  • Jambhrunkar, S.; Qu, Z.; Popat, A.; Karmakar, S.; Xu, C.; Yu, C. Modulating in Vitro Release and Solubility of Griseofulvin Using Functionalized Mesoporous Silica Nanoparticles. J. Colloid Interface Sci. 2014, 434, 218–225. DOI: 10.1016/j.jcis.2014.08.019.
  • Chen, H.; Kuang, Y.; Liu, R.; Chen, Z.; Jiang, B.; Sun, Z.; Chen, X.; Li, C. Dual-pH-Sensitive Mesoporous Silica Nanoparticle-Based Drug Delivery System for Tumor-Triggered Intracellular Drug Release. J. Mater. Sci. 2018, 53, 10653–10665. DOI: 10.1007/s10853-018-2363-8.
  • Yu, M.; Jambhrunkar, S.; Thorn, P.; Chen, J.; Gu, W.; Yu, C. Hyaluronic Acid Modified Mesoporous Silica Nanoparticles for Targeted Drug Delivery to CD44-Overexpressing Cancer Cells. Nanoscale 2013, 5, 178–183. DOI: 10.1039/c2nr32145a.
  • Sun, X.; Luo, Y.; Huang, L.; Yu, B.-Y.; Tian, J. A Peptide-Decorated and Curcumin Loaded Mesoporous Silica Nanomedicine for Effectively Overcoming Multidrug Resistance in Cancer Cells. RSC Adv. 2017, 7, 16401–16409. DOI: 10.1039/C7RA01128H.
  • Huang, G.; Liu, R.; Hu, Y.; Li, S.-H.; Wu, Y.; Qiu, Y.; Li, J.; Yang, H.-H. FeOOH-Loaded Mesoporous Silica Nanoparticles as a Theranostic Platform with pH-Responsive MRI Contrast Enhancement and Drug Release. Sci. China Chem. 2018, 61, 806–811. DOI: 10.1007/s11426-017-9217-4.
  • Qiao, L.; Wang, X.; Gao, Y.; Wei, Q.; Hu, W.; Wu, L.; Li, P.; Zhu, R.; Wang, Q. Laccase Mediated Formation of Mesoporous Silica Nanoparticle Based Redox Stimuli-Responsive Hybrid Nanogels as a Multifunctional Nanotheranostic Agent. Nanoscale 2016, 8, 17241–17249. DOI: 10.1039/c6nr05943k.
  • Zhang, Y.; Xu, J. Mesoporous Silica Nanoparticle-Based Intelligent Drug Delivery System for Bienzyme-Responsive Tumour Targeting and Controlled Release. R. Soc. Open Sci. 2018, 5, 170986. DOI: 10.1098/rsos.170986.
  • Lee, J.; Kim, H.; Han, S.; Hong, E.; Lee, K. H.; Kim, C. Stimuli-Responsive Conformational Conversion of Peptide Gatekeepers for Controlled Release of Guests from Mesoporous Silica Nanocontainers. J. Am. Chem. Soc. 2014, 136, 12880–12883. DOI: 10.1021/ja507767h.
  • Li, Q. L.; Xu, S. H.; Zhou, H.; Wang, X.; Dong, B.; Gao, H.; Tang, J.; Yang, Y. W. pH and Glutathione Dual-Responsive Dynamic Cross-Linked Supramolecular Network on Mesoporous Silica Nanoparticles for Controlled Anticancer Drug Release. ACS Appl. Mater. Interfaces 2015, 7, 28656–28664. DOI: 10.1021/acsami.5b10534.
  • Liu, J.; Luo, Z.; Zhang, J.; Luo, T.; Zhou, J.; Zhao, X.; Cai, K. Hollow Mesoporous Silica Nanoparticles Facilitated Drug Delivery via Cascade pH Stimuli in Tumor Microenvironment for Tumor Therapy. Biomaterials 2016, 83, 51–65. DOI: 10.1016/j.biomaterials.2016.01.008.
  • Huang, L.; Liu, J.; Gao, F.; Cheng, Q.; Lu, B.; Zheng, H.; Xu, H.; Xu, P.; Zhang, X.; Zeng, X. A Dual-Responsive, Hyaluronic Acid Targeted Drug Delivery System Based on Hollow Mesoporous Silica Nanoparticles for Cancer Therapy. J. Mater. Chem. B. 2018, 6, 4618–4629. DOI: 10.1039/c8tb00989a.
  • Hai, L.; Jia, X.; He, D.; Zhang, A.; Wang, T.; Cheng, H.; He, X.; Wang, K. DNA-Functionalized Hollow Mesoporous Silica Nanoparticles with Dual Cargo Loading for near Infrared-Responsive Synergistic Chemo-Photothermal Treatment of Cancer Cells. ACS Appl. Nano Mater. 2018, 1, 3486–3497. DOI: 10.1021/acsanm.8b00657.
  • Viswanathan, T. M.; Chitradevi, K.; Zochedh, A.; Vijayabhaskar, R.; Sukumaran, S.; Kunjiappan, S.; Kumar, N. S.; Sundar, K.; Babkiewicz, E.; Maszczyk, P.; Kathiresan, T. Guanidine–Curcumin Complex-Loaded Amine-Functionalised Hollow Mesoporous Silica Nanoparticles for Breast Cancer Therapy. Cancers 2022, 14, 3490. DOI: 10.3390/cancers14143490.
  • Chen, Y.; Wang, X.; Lu, Z.; Chang, C.; Zhang, Y.; Li, Y.; Yi, M.; Xiong, B.; Lu, B. Lactobionic Acid-Functionalized Hollow Mesoporous Silica Nanoparticles for Cancer Chemotherapy and Phototherapy. Process Biochem. 2022, 121, 698–706. DOI: 10.1016/j.procbio.2022.08.018.
  • Niu, S.; Zhang, X.; Williams, G. R.; Wu, J.; Gao, F.; Fu, Z.; Chen, X.; Lu, S.; Zhu, L. M. Hollow Mesoporous Silica Nanoparticles Gated by Chitosan-Copper Sulfide Composites as Theranostic Agents for the Treatment of Breast Cancer. Acta Biomater. 2021, 126, 408–420. DOI: 10.1016/j.actbio.2021.03.024.
  • Zhou, Y.; Chang, C.; Liu, Z.; Zhao, Q.; Xu, Q.; Li, C.; Chen, Y.; Zhang, Y.; Lu, B. Hyaluronic Acid-Functionalized Hollow Mesoporous Silica Nanoparticles as pH-Sensitive Nanocarriers for Cancer Chemo-Photodynamic Therapy. Langmuir 2021, 37, 2619–2628. DOI: 10.1021/acs.langmuir.0c03250.
  • Rahoui, N.; Jiang, B.; Hegazy, M.; Taloub, N.; Wang, Y.; Yu, M.; Huang, Y. D. Gold Modified Polydopamine Coated Mesoporous Silica Nano-Structures for Synergetic Chemo-Photothermal Effect. Colloids Surf B Biointerfaces 2018, 171, 176–185. DOI: 10.1016/j.colsurfb.2018.07.015.
  • Zhou, Z.; Yan, Y.; Hu, K.; Zou, Y.; Li, Y.; Ma, R.; Zhang, Q.; Cheng, Y. Autophagy Inhibition Enabled Efficient Photothermal Therapy at a Mild Temperature. Biomaterials 2017, 141, 116–124. DOI: 10.1016/j.biomaterials.2017.06.030.
  • Zhang, L.; Su, H.; Cai, J.; Cheng, D.; Ma, Y.; Zhang, J.; Zhou, C.; Liu, S.; Shi, H.; Zhang, Y.; Zhang, C. A Multifunctional Platform for Tumor Angiogenesis-Targeted Chemothermal Therapy Using Polydopamine-Coated Gold Nanorods. ACS Nano 2016, 10, 10404–10417. DOI: 10.1021/acsnano.6b06267.
  • Cheng, W.; Nie, J.; Gao, N.; Liu, G.; Tao, W.; Xiao, X.; Jiang, L.; Liu, Z.; Zeng, X.; Mei, L. A Multifunctional Nanoplatform against Multidrug Resistant Cancer: merging the Best of Targeted Chemo/Gene/Photothermal Therapy. Adv. Funct. Mater. 2017, 27, 1704135. DOI: 10.1002/adfm.201704135.
  • Wei, Y.; Gao, L.; Wang, L.; Shi, L.; Wei, E.; Zhou, B.; Zhou, L.; Ge, B. Polydopamine and Peptide Decorated Doxorubicin-Loaded Mesoporous Silica Nanoparticles as a Targeted Drug Delivery System for Bladder Cancer Therapy. Drug Deliv 2017, 24, 681–691. DOI: 10.1080/10717544.2017.1309475.
  • Ji, F.; Sun, H.; Qin, Z.; Zhang, E.; Cui, J.; Wang, J.; Li, S.; Yao, F. Engineering Polyzwitterion and Polydopamine Decorated Doxorubicin-Loaded Mesoporous Silica Nanoparticles as a pH-Sensitive Drug Delivery. Polymers 2018, 10, 326. DOI: 10.3390/polym10030326.
  • Shen, A.; Meng, X.; Gao, X.; Xu, X.; Shao, C.; Tang, Z.; Liu, Y.; Bu, W.; Wang, P. An Adaptable Nanoplatform for Integrating Anatomic and Functional Magnetic Resonance Imaging under a 3.0 T Magnetic Field. Adv. Funct. Mater 2019, 29, 1803832. DOI: 10.1002/adfm.201803832.
  • Cheng, W.; Liang, C.; Xu, L.; Liu, G.; Gao, N.; Tao, W.; Luo, L.; Zuo, Y.; Wang, X.; Zhang, X.; et al. TPGS-Functionalized Polydopamine-Modified Mesoporous Silica as Drug Nanocarriers for Enhanced Lung Cancer Chemotherapy against Multidrug Resistance. Small 2017, 13, 1700623. DOI: 10.1002/smll.201700623.
  • Cheng, L.; Ma, H.; Shao, M.; Fan, Q.; Lv, H.; Peng, J.; Hao, T.; Li, D.; Zhao, C.; Zong, X. Synthesis of Folate-Chitosan Nanoparticles Loaded with Ligustrazine to Target Folate Receptor Positive Cancer Cells. Mol. Med. Rep. 2017, 16, 1101–1108. DOI: 10.3892/mmr.2017.6740.
  • Kumbhar, S. T.; Patil, R. Y.; Bhatia, M. S.; Choudhari, P. B.; Gaikwad, V. L. Synthesis and Characterization of Chitosan Nanoparticles Decorated with Folate and Loaded with Dasatinib for Targeting Folate Receptors in Cancer Cells. OpenNano 2022, 7, 100043. DOI: 10.1016/j.onano.2022.100043.
  • Li, X.; Garamus, V. M.; Li, N.; Gong, Y.; Zhe, Z.; Tian, Z.; Zou, A. Preparation and Characterization of a pH-Responsive Mesoporous Silica Nanoparticle Dual-Modified with Biopolymers. Colloids Surf. A Physicochem. Eng. Aspects 2018, 548, 61–69. DOI: 10.1016/j.colsurfa.2018.03.047.
  • Agardan, N. B. M.; Sarisozen, C.; Torchilin, V. P. Redox-Triggered Intracellular siRNA Delivery. Chem. Commun (Camb) 2018, 54, 6368–6371. DOI: 10.1039/c8cc01376d.
  • Maeda, H. The Link between Infection and Cancer: tumor Vasculature, Free Radicals, and Drug Delivery to Tumors via the EPR Effect. Cancer Sci. 2013, 104, 779–789. DOI: 10.1111/cas.12152.
  • Fang, X.; Chen, C.; Liu, Z.; Liu, P.; Zheng, N. A Cationic Surfactant Assisted Selective Etching Strategy to Hollow Mesoporous Silica Spheres. Nanoscale 2011, 3, 1632–1639. DOI: 10.1039/c0nr00893a.
  • Liu, R.; Guo, Y.; Odusote, G.; Qu, F.; Priestley, R. D. Core-Shell Fe3O4 Polydopamine Nanoparticles Serve Multipurpose as Drug Carrier, Catalyst Support and Carbon Adsorbent. ACS Appl. Mater. Interfaces 2013, 5, 9167–9171. DOI: 10.1021/am402585y.
  • Kong, N.; Deng, M.; Sun, X. N.; Chen, Y. D.; Sui, X. B. Polydopamine-Functionalized CA-(PCL-ran-PLA) Nanoparticles for Target Delivery of Docetaxel and Chemo-Photothermal Therapy of Breast Cancer. Front. Pharmacol. 2018, 9, 125. DOI: 10.3389/fphar.2018.00125.
  • Qian, M.; Du, Y.; Wang, S.; Li, C.; Jiang, H.; Shi, W.; Chen, J.; Wang, Y.; Wagner, E.; Huang, R. Highly Crystalline Multicolor Carbon Nanodots for Dual-Modal Imaging Guided Photothermal Therapy of Glioma. ACS Appl. Mater. Interfaces 2018, 10, 4031–4040. DOI: 10.1021/acsami.7b19716.
  • Chen, Y.; Wang, L.; Shi, J. Two-Dimensional Non-Carbonaceous Materials-Enabled Efficient Photothermal Cancer Therapy. Nano Today 2016, 11, 292–308. DOI: 10.1016/j.nantod.2016.05.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.