152
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Rheological and electrical behavior of core–shell conduit comprising PCL-chitosan-gelatin/Al2O3 nanofibers and gellan-agar/poly aniline-graphene

, &
Pages 818-827 | Received 29 Jul 2022, Accepted 16 Oct 2022, Published online: 28 Oct 2022

References

  • M.; Jack, M.; W.; Smith, B.; J.; Spinner, R. Neurosurgery for the Neurologist: Peripheral Nerve Injury and Compression (What Can Be Fixed?). Neurol. Clin. 2022, 40, 283–295. DOI: 10.1016/j.ncl.2021.11.001.
  • Li, Y.; Jin, X.; Yang, X.; Zhang, L.; Qi, Z. Creatine Promotes the Repair of Peripheral Nerve Injury by Affecting Macrophage Polarization. Biochem. Biophys. Res. Commun. 2022, 604, 116–122. DOI: 10.1016/j.bbrc.2022.03.047.
  • Geissler, J.; Stevanovic, M. Management of Large Peripheral Nerve Defects with Autografting. Injury 2019, 50, S64–S67. DOI: 10.1016/j.injury.2019.10.051.
  • Cristine Santos Roballo, K.; Bushman, J. Evaluation of the Host Immune Response and Functional Recovery in Peripheral Nerve Autografts and Allografts. Transpl. Immunol. 2019, 53, 61–71. DOI: 10.1016/j.trim.2019.01.003.
  • Su Lee, H.; Young Jeon, E.; Jun Nam, J.; Hun Park, J.; Cheul Choi, I.; Hyun, S.; Kim, J.; Chung, J.; Lee, K.; Woong Park, J.; Jung, Y. Development of a Regenerative Porous PLCL Nerve Guidance Conduit with Swellable Hydrogel-Based Microgrooved Surface Pattern via 3D Printing. Acta Biomater. 2022, 141, 219–232. DOI: 10.1016/j.actbio.2022.01.042.
  • S.; Manoukian, S.; T.; Baker, J.; Rudraiah, S.; R.; Arul, M.; T.; Vella, A.; J.; Domb, A.; G.; Kumbar, S. Functional Polymeric Nerve Guidance Conduits and Drug Delivery Strategies for Peripheral Nerve Repair and Regeneration. J. Control. Release 2020, 317, 78–95. DOI: 10.1016/j.jconrel.2019.11.021.
  • Jeon, J.; Suk Lee, M.; Lim, J.; Park, S.; Min Kim, S.; Kim, D.; Tae, G.; Seok Yang, H. Micro-Grooved Nerve Guidance Conduits Combined with Microfiber for Rat Sciatic Nerve Regeneration. J. Ind. Eng. Chem. 2020, 90, 214–223. DOI: 10.1016/j.jiec.2020.07.014.
  • Sun, B.; Zhou, A.; Li, D.; Wu, T.; Zheng, H.; Liu, J.; Wang, G.; Yu, Y.; Mo, X. Polypyrrole-Coated Poly(l-Lactic Acid-co-ε-Caprolactone)/Silk Fibroin Nanofibrous Nerve Guidance Conduit Induced Nerve Regeneration in Rat. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 94, 190–199. DOI: 10.1016/j.msec.2018.09.021.
  • Sarker, M. D.; Naghieh, S.; McInnes, A. D.; Schreyer, D. J.; Chen, X. Regeneration of Peripheral Nerves by Nerve Guidance Conduits: Influence of Design, Biopolymers, Cells, Growth Factors, and Physical Stimuli. Prog. Neurobiol. 2018, 171, 125–150. DOI: 10.1016/j.pneurobio.2018.07.002.
  • Cai, C.; Zhu, H.; Chen, Y.; Chen, C.; Li, H.; Yang, Z.; Liu, H. Conductive Nerve Guide Conduits Based on Wet-Adhesive Hydrogel to Accelerate Peripheral Nerve Repair. Appl. Mater. Today 2022, 27, 10149. DOI: 10.1016/j.apmt.2022.101491.
  • Goonoo, N.; Bhaw-Luximon, A. Piezoelectric Polymeric Scaffold Materials as Biomechanical Cellular Stimuli to Enhance Tissue Regeneration. Mater. Today Commun. 2022, 31, 103491. DOI: 10.1016/j.mtcomm.2022.103491.
  • Mohseni, M.; Ramazani Saadatabadi, A. A. Highly Conductive Self-Electrical Stimuli Core-Shell Conduit Based on PVDF-Chitosan–Gelatin Filled with in-Situ Gellan Gum as a Possible Candidate for Nerve Regeneration: A Rheological, Electrical, and Structural Study. Appl. Nanosci. 2021, 11, 2199–2213. DOI: 10.1007/s13204-021-02012-1.
  • De, I.; Sharma, P.; Singh, M. Emerging Approaches of Neural Regeneration Using Physical Stimulations Solely or Coupled with Smart Piezoelectric Nano-Biomaterials. Eur. J. Pharm. Biopharm. 2022, 173, 73–91. DOI: 10.1016/j.ejpb.2022.02.016.
  • Ribeiro, C.; Sencadas, V. M.; Correia, D.; Lanceros-Méndez, S. Piezoelectric Polymers as Biomaterials for Tissue Engineering Applications. Colloids Surf. B Biointerfaces 2015, 136, 46–55. DOI: 10.1016/j.colsurfb.2015.08.043.
  • Mohseni, M.; Ramazani, S. A.; A.; H Shirazi, F.; Hassanzadeh Nemati, N. Preparation and Characterization of Self-Electrical Stimuli Conductive Gellan Based Nano Scaffold for Nerve Regeneration Containing Chopped Short Spun Nanofibers of PVDF/MCM41 and Polyaniline/Graphene Nanoparticles: Physical, Mechanical and Morphological Studies. Int. J. Biol. Macromol. 2021, 167, 881–893. DOI: 10.1016/j.ijbiomac.2020.11.045.
  • Wang, Z.; Xue, D.; Chen, X.; Lü, B.; Ratajczak, H. Mechanical and Biomedical Properties of Hydroxyapatite-Based Gradient Coating on α-Al2O3 Ceramic Substrate. J. Non Cryst. Solids 2005, 351, 1675–1681. DOI: 10.1016/j.jnoncrysol.2005.04.065.
  • Zhao, Y.; Liu, H.; Wang, Z.; Zhang, Q.; Li, Y.; Tian, W.; Tong, Z.; Wang, Y.; Huselstein, C.; Xiaowen, S.; Chen, Y. Electrodeposition to Construct Mechanically Robust Chitosan-Based Multi-Channel Conduits. Colloids Surf. B Biointerfaces 2018, 163, 412–418. DOI: 10.1016/j.colsurfb.2018.01.002.
  • Li, Y.; Dong, T.; Li, Z.; Ni, S.; Zhou, F.; Alimi, O. A.; Chen, S.; Duan, B.; Kuss, M.; Wu, S. Review of Advances in Electrospinning-Based Strategies for Spinal Cord Regeneration. Mater. Today Chem. 2022, 24, 100944. DOI: 10.1016/j.mtchem.2022.100944.
  • Dinis, T. M.; Elia, R.; Vidal, G.; Dermigny, Q.; Denoeud, C.; Kaplan, D. L.; Egles, C.; Marin, F. 3D Multi-Channel bi-Functionalized Silk Electrospun Conduits for Peripheral Nerve Regeneration. J. Mech. Behav. Biomed. Mater. 2015, 41, 43–55. DOI: 10.1016/j.jmbbm.2014.09.029.
  • Liu, S.; Sun, X.; Wang, T.; Chen, S.; Zeng, C-g.; Xie, G.; Zhu, Q.; Liu, X.; Quan, D. Nano-Fibrous and Ladder-like Multi-Channel Nerve Conduits: Degradation and Modification by Gelatin. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 83, 130–142. DOI: 10.1016/j.msec.2017.11.020.
  • Jiang, Z.; Song, Y.; Qiao, J.; Yang, Y.; Zhang, W.; Liu, W.; Han, B. Rat Sciatic Nerve Regeneration across a 10-mm Defect Bridged by a Chitin/CM-Chitosan Artificial Nerve Graft. Int. J. Biol. Macromol. 2019, 129, 997–1005. DOI: 10.1016/j.ijbiomac.2019.02.080.
  • Xu, H.; Yu, Y.; Zhang, L.; Zheng, F.; Yin, Y.; Gao, Y.; Li, K.; Xu, J.; Wen, J.; Chen, H.; et al. Sustainable Release of Nerve Growth Factor for Peripheral Nerve Regeneration Using Nerve Conduits Laden with Bioconjugated Hyaluronic Acid-Chitosan Hydrogel. Compos. B. Eng. 2022, 230, 109509. DOI: 10.1016/j.compositesb.2021.109509.
  • Niu, Y. J.; Stadler, F.; Fu, M. Biomimetic Electrospun Tubular PLLA/Gelatin Nanofiber Scaffold Promoting Regeneration of Sciatic Nerve Transection in SD Rat. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 121, 111858. DOI: 10.1016/j.msec.2020.111858.
  • Salmoria, G. V.; Paggi, R. A.; Kanis, L. A. Manufacturing of PCL/SAg Tubes by Melt-Extrusion for Nerve Regeneration: Structure and Mechanical Properties. Poly. Test 2016, 55, 160–165. DOI: 10.1016/j.polymertesting.2016.08.021.
  • J.; Reid, A.; C.; de Luca, A.; Faroni, A.; Downes, S.; Sun, M.; Terenghi, G.; J.; Kingham, P. Long Term Peripheral Nerve Regeneration Using a Novel PCL Nerve Conduit. Neurosci. Lett. 2013, 544, 125–130. DOI: 10.1016/j.neulet.2013.04.001.
  • Jin, Y.; Zhang, W.; Zhang, Y.; Yang, Y.; Fang, Z.; Song, J.; Qian, Y.; Yuan, W.-E. Multifunctional Biomimetic Hydrogel Based on Graphene Nanoparticles and Sodium Alginate for Peripheral Nerve Injury Therapy. Biomater. Adv. 2022, 135, 212727. DOI: 10.1016/j.bioadv.2022.212727.
  • Zarrintaj, P.; Zangene, E.; Manouchehri, S.; Mohammadi Amirabad, L.; Baheiraei, N.; Hadjighasem, M.-R.; Farokhi, M.; Ganjali, M. R.; Walker, W.; Saeb, B.; et al. Conductive Biomaterials as Nerve Conduits: Recent Advances and Future Challenges. Appl. Mater. Today 2020, 20, 100784. DOI: 10.1016/j.apmt.2020.100784.
  • Palliyalil, M.; Sidheekha, K.; Nufaira, A. K.; Shabeeba, L.; Rajan, A.; Ismail, Y. Characterization of Polyanilines Synthesized at Different pH for Electrochemical Sensing and Supercapacitor Applications. Mater. Today 2022, 51, 2286–2292. DOI: 10.1016/j.matpr.2021.11.402.
  • Shahadat, M.; Jha, A.; Adnan, R.; Ali, S. W.; Ismail, I. M.; Oves, M.; Ahammad.; S. Z.; Shahid-Ul-Islam. Shaikh Ziauddin Ahammad. Recent Advances in Chitosan-Polyaniline Based Nanocomposites for Environmental Applications: A Review. Polym. J 2022, 254, 124975. DOI: 10.1016/j.polymer.2022.124975.
  • Liu, M-i.; Long, X.; Tang, H.-Y.; Fan, X.-H.; Chen, C.-Y.; Shao, J.-J. The Formation of Uniform Graphene-Polyaniline Hybrids Using a Completely Miscible Cosolvent That Have an Excellent Electrochemical Performance. New Carbon Mater 2022, 37, 381–390. DOI: 10.1016/S1872-5805(21)60099-9.
  • Mohammadi, M.; Ramazani SaadatAbadi, A.; Mashayekhan, S.; Sanaei, R. Conductive Multichannel PCL/Gelatin Conduit with Tunable Mechanical and Structural Properties for Peripheral Nerve Regeneration. J. Appl. Polym. Sci. 2020, 137, 49219. DOI: 10.1002/app.49219.
  • Mohseni, M.; Ramazani, S. A.; A.; H-Shirazi, F.; Hassanzadeh Nemati, N. Gellan Gel Comprising Short PVDF Based-Nanofibers: The Effect of Piezoelectric Nanofiber on the Mechanical and Electrical Behavior. Mater. Today Commun. 2021, 26, 101785. DOI: 10.1016/j.mtcomm.2020.101785.
  • W.; Peterson.; G. H.; Epps, T. Impact of Zinc Salt Counterion on Poly(Ethylene Oxide) Solution Viscosity, Conductivity, and Ability to Generate Electrospun MOF/Nanofiber Composites. Polym. J. 2022, 252, 124816. DOI: 10.1016/j.polymer.2022.124816.
  • Mohammad Ghorbani, F.; Kaffashi, B.; Shokrollahi, P.; Seyedjafari, E.; Ardeshirylajimi, A. PCL/Chitosan/Zn-Doped nHA Electrospun Nanocomposite Scaffold Promotes Adipose Derived Stem Cells Adhesion and Proliferation. Carbohydr. Polym. 2015, 118, 133–142. DOI: 10.1016/j.carbpol.2014.10.071.
  • Mohseni, B.; Delavar, F.; Rezaei, H. Piezoelectric Gel-Fiber-Particle Substrate Containing Short PVDF-Chitosan-Gelatin Nanofibers and Mesoporous Silica Nanoparticles with Enhanced Antibacterial Activity as a Potential of Wound Dressing Applications. J. Macromol. Sci 2021, 21, 694–708. DOI: 10.1080/10601325.2021.1927754.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.