187
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Fe3O4 magnetic nanoparticles-loaded thermoresponsive poly(N-vinylcaprolactam)-g-galactosylated chitosan microparticles: investigation of physicochemical, morphological and magnetic properties

ORCID Icon
Pages 181-191 | Received 25 Oct 2022, Accepted 23 Feb 2023, Published online: 02 Mar 2023

References

  • Xiong, F.; Huang, S.; Gu, N. Magnetic Nanoparticles: Recent Developments in Drug Delivery System. Drug Dev. Ind. Pharm. 2018, 44, 697–706. DOI: 10.1080/03639045.2017.1421961.
  • Li, Y.; Huang, G.; Zhang, X.; Li, B.; Chen, Y.; Lu, T.; Lu, T. J.; Xu, F. Magnetic Hydrogels and Their Potential Biomedical Applications. Adv. Funct. Mater. 2013, 23, 660–672. DOI: 10.1002/adfm.201201708.
  • Brudno, Y.; Mooney, D. J. On-Demand Drug Delivery from Local Depots. J. Control Release 2015, 219, 8–17. DOI: 10.1016/j.jconrel.2015.09.011.
  • Assa, F.; Jafarizadeh-Malmiri, H.; Ajamein, H.; Vaghari, H.; Anarjan, N.; Ahmadi, O.; Berenjian, A. Chitosan Magnetic Nanoparticles for Drug Delivery Systems. Crit. Rev. Biotechnol. 2017, 37, 492–509. DOI: 10.1080/07388551.2016.1185389.
  • Quinto, C. A.; Mohindra, P.; Tong, S.; Bao, G. Multifunctional Superparamagnetic Iron Oxide Nanoparticles for Combined Chemotherapy and Hyperthermia Cancer Treatment. Nanoscale 2015, 7, 12728–12736. DOI: 10.1039/c5nr02718g.
  • Cao, L.; Li, G.; Yang, D.; Liu, J.; Huang, Y. Application of Response Surface Methodology to Formulation Optimization of Rapamycin Loaded Magnetic Fe3O4/Carboxymethylchitosan Nanoparticles. J. Macromol. Sci. Part A, Pure Appl. Chem. 2013, 50, 894–904. DOI: 10.1080/10601325.2013.802548.
  • Singh, N.; Jenkins, G. J. S.; Asadi, R.; Doak, S. H. Potential Toxicity of Superparamagnetic Iron Oxide Nanoparticles (SPION). Nano Rev. 2010, 1, 5358. DOI: 10.3402/nano.v1i0.5358.
  • Wechsler, M. E.; Stephenson, R. E.; Murphy, A. C.; Oldenkamp, H. F.; Ankur, S.; Peppas, N. A. Engineered Microscale Hydrogels for Drug Delivery, Cell Therapy, and Sequencing. Biomed. Microdevices 2019, 21, 31. DOI: 10.1007/s10544-019-0358-0.
  • Zhang, W.-J.; Yan, Y.-Z.; Nagappan, S.; He, S.; Ha, C.-S.; Jin, Y.-S. Dual (Thermo-/pH-) Responsive P(NIPAM-co-AA-co-HEMA) Nanocapsules for Controlled Release of 5-Fluorouracil. J. Macromol. Sci. Part A, Pure Appl. Chem. 2021, 58, 860–871. DOI: 10.1080/10601325.2021.1964368.
  • Hoare, T.; Timko, B. P.; Santamaria, J.; Goya, G. F.; Irusta, S.; Lau, S.; Stefanescu, C. F.; Lin, D.; Langer, R.; Kohane, D. S. Magnetically Triggered Nanocomposite Membranes: A Versatile Platform for Triggered Drug Release. Nano Lett. 2011, 11, 1395–1400. DOI: 10.1021/nl200494t.
  • Vihola, H.; Laukkanen, A.; Valtola, L.; Tenhu, H.; Hirvonen, J. Cytotoxicity of Thermosensitive Polymers Poly(N-Isopropylacrylamide), Poly(N-Vinylcaprolactam) and Amphiphilically Modified Poly(N-Vinylcaprolactam). Biomaterials 2005, 26, 3055–3064. DOI: 10.1016/j.biomaterials.2004.09.008.
  • Marsili, L.; Bo, M. D.; Eisele, G.; Donati, I.; Berti, F.; Toffoli, G. Characterization of Thermoresponsive Poly-N-Vinylcaprolactam Polymers for Biological Applications. Polymers 2021, 13, 2639. DOI: 10.3390/polym13162639.
  • Durkut, S.; Elçin, Y. M. Synthesis and Characterization of Thermosensitive Poly(N-Vinylcaprolactam)-g-Collagen. Artif. Cells Nanomed. Biotechnol. 2017, 45, 1665–1674. DOI: 10.1080/21691401.2016.1276925.
  • Durkut, S.; Elçin, A. E.; Elçin, Y. M. Thermoresponsive Poly (N-Vinylcaprolactam)-g-Galactosylated Chitosan Hydrogel: Synthesis, Characterization, and Controlled Release Properties. Int. J. Polym. Mater. Polym. Biomater. 2019, 68, 1034–1047. DOI: 10.1080/00914037.2018.1525546.
  • Wang, J.; Tan, H.; Yu, A.; Ling, P.; Lou, H.; Zhai, G.; Wu, J. Preparation of Chitosan-Based Nanoparticles for Delivery of Low Molecular Weight Heparin. J. Biomed. Nanotechnol. 2011, 7, 696–703. DOI: 10.1166/jbn.2011.1326.
  • Prabaharan, M. Chitosan-Based Nanoparticles for Tumor-Targeted Drug Delivery. Int. J. Biol. Macromol. 2015, 72, 1313–1322. DOI: 10.1016/j.ijbiomac.2014.10.052.
  • Venkatesan, J.; Anil, S.; Kim, S. K.; Shim, M. S. Chitosan as a Vehicle for Growth Factor Delivery: Various Preparations and Their Applications in Bone Tissue Regeneration. Int. J. Biol. Macromol. 2017, 104, 1383–1397. DOI: 10.1016/j.ijbiomac.2017.01.072.
  • Soares, P. I. P.; Machado, D.; Laia, C. A.; Carvalho, A.; Pereira, L. C. J.; Coutinho, J. T.; Ferreira, I. M. M.; Novo, C. M. M.; Borges, J. P. Iron Oxide Nanoparticles Stabilized with a Bilayer of Oleic Acid for Magnetic Hyperthermia and Mri Applications. Appl. Surf. Sci. 2016, 383, 240–247. DOI: 10.1016/j.apsusc.2016.04.181.
  • Neves, A. L. P.; Milioli, C. C.; Müller, L.; Riella, H. G.; Kuhnen, N. C.; Stulzer, H. K. Factorial Design as Tool in Chitosan Nanoparticles Development by Ionic Gelation Technique. Colloids Surf. A Physicochem. Eng. Aspects 2014, 445, 34–39. DOI: 10.1016/j.colsurfa.2013.12.058.
  • Gao, S.; Chen, J.; Xu, X.; Ding, Z.; Yang, Y.-H.; Hua, Z.; Zhang, J. Galactosylated Low Molecular Weight Chitosan as DNA Carrier for Hepatocyte-Targeting. Int. J. Pharm. 2003, 255, 57–68. DOI: 10.1016/S0378-5173(03)00082-6.
  • Zhang, Y.-Q.; Shen, Y.; Liao, M.-M.; Mao, X.; Mi, G.-J.; You, C.; Guo, Q.-Y.; Li, W.-J.; Wang, X.-Y.; Lin, N.; Webster, T. J. Galactosylated Chitosan Triptolide Nanoparticles for Overcoming Hepatocellular Carcinoma: Enhanced Therapeutic Efficacy, Low Toxicity, and Validated Network Regulatory Mechanisms. Nanomedicine 2019, 15, 86–97. DOI: 10.1016/j.nano.2018.09.002.
  • Savaş, B.; Öztürk, T. Synthesis and Characterization of Poly(Vinyl Chloride-g-Methyl Methacrylate) Graft Copolymer by Redox Polymerization and Cu Catalyzed Azidealkyne Cycloaddition Reaction. J. Macromol. Sci. Part A Pure Appl. Chem. 2020, 57, 819–825. DOI: 10.1080/10601325.2020.1788393.
  • Öztürk, T.; Türkoğlu, H. Synthesis and Characterization of the Graft Copolymer Including Polybbutyrolactone and Polyvinyl Chloride by Ring-Opening Polymerization and “Click” Chemistry. J. Macromol. Sci. Part A, Pure Appl. Chem. 2022, 59, 872–879. DOI: 10.1080/10601325.2022.2143375.
  • Berger, J.; Reist, M.; Mayer, J. M.; Felt, O.; Peppas, N. A.; Gurny, R. Structure and Interactions in Covalently and Ionically Crosslinked Chitosan Hydrogels for Biomedical Applications. Eur. J. Pharm. Biopharm. 2004, 57, 19–34. DOI: 10.1016/s0939-6411(03)00161-9.
  • Al-Mubaddel, F. S.; Haider, S.; Aijaz, M. O.; Haider, A.; Kamal, T.; Almasry, W. A.; Javid, M.; Khan, S. U.-D. Preparation of the Chitosan/Polyacrylonitrile Semi-IPN Hydrogel via Glutaraldehyde Vapors for the Removal of Rhodamine B Dye. Polym. Bull. 2017, 74, 1535–1551. DOI: 10.1007/s00289-016-1788-y.
  • Gupta, K. C.; Jabrail, F. H. Glutaraldehyde and Glyoxal Cross-Linked Chitosan Microspheres for Controlled Delivery of Centchroman. Carbohydr. Res. 2006, 341, 744–756. DOI: 10.1016/j.carres.2006.02.003.
  • Shim, W. S.; Kim, J.-H.; Kim, K.; Kim, Y.-S.; Park, R.-W.; Kim, I.-S.; Kwon, I. C.; Lee, D. S. pH- and Temperature-Sensitive, Injectable, Biodegradable Block Copolymer Hydrogels as Carriers for Paclitaxel. Int. J. Pharm. 2007, 331, 11–18. DOI: 10.1016/j.ijpharm.2006.09.027.
  • Vashist, A.; Vashist, A.; Gupta, Y. K.; Ahmad, S. Recent Advances in Hydrogel Based Drug Delivery Systems for the Human Body. J. Mater. Chem. B 2014, 2, 147–166. DOI: 10.1039/c3tb21016b.
  • Shin, M. K.; Kim, S. I.; Kim, S. J.; Park, S. Y.; Hyun, Y. H.; Lee, Y. P.; Kyung, L. E.; Han, S.-S.; Jang, D.-P.; Kim, Y.-B.; et al. Controlled Magnetic Nanofiber Hydrogels by Clustering Ferritin. Langmuir 2008, 24, 12107–12111. DOI: 10.1021/la802155a.
  • Liang, Y.-Y.; Zhang, L.-M.; Jiang, W.; Li, W. Embedding Magnetic Nanoparticles into Polysaccharide-Based Hydrogels for Magnetically Assisted Bioseparation. ChemPhysChem. 2007, 8, 2367–2372. DOI: 10.1002/cphc.200700359.
  • Veloso, S. R. S.; Andrade, R. G. D.; Castanheira, E. M. S. Review on the Advancements of Magnetic Gels: Towards Multifunctional Magnetic Liposome-Hydrogel Composites for Biomedical Application. Adv. Colloid Interface Sci. 2021, 288, 102351. DOI: 10.1016/j.cis.2020.102351.
  • Liu, H.; Wang, C.; Gao, Q.; Liu, X.; Tong, Z. Magnetic Hydrogels with Supracolloidal Structures Prepared by Suspension Polymerization Stabilized by Fe2O3 Nanoparticles. Acta Biomater. 2010, 6, 275–281. DOI: 10.1016/j.actbio.2009.06.018.
  • Brunsen, A.; Utech, S.; Maskos, M.; Knoll, W.; Jonas, U. Magnetic Composite Thin Films of FexOy Nanoparticles and Photocrosslinked Dextran Hydrogels. J. Magn. Magn. Mater. 2012, 324, 1488–1497. DOI: 10.1016/j.jmmm.2011.11.039.
  • Gang, F.; Jiang, L.; Xiao, Y.; Zhang, J.; Sun, X. Multi-Functional Magnetic Hydrogel: Design Strategies and Applications. Nano Select 2021, 2, 2291–2307. DOI: 10.1002/nano.202100139.
  • Medeiros, S. F.; Filizzola, J. O. C.; Oliveira, P. F. M.; Silva, T. M.; Lara, B. R.; Lopes, M. V.; Rossi-Bergmann, B.; Elaissari, A.; Santos, A. M. Fabrication of Biocompatible and Stimuli-Responsive Hybrid Microgels with Magnetic Properties via Aqueous Precipitation Polymerization. Mater. Lett. 2016, 175, 296–299. DOI: 10.1016/j.matlet.2016.04.004.
  • Lalegül-Ülker, Ö.; Vurat, M. T.; Elçin, A. E.; Elçin, Y. M. Magnetic Silk Fibroin Composite Nanofibers for Biomedical Applications: Fabrication and Evaluation of the Chemical, Thermal, Mechanical, and in Vitro Biological Properties. J. Appl. Polym. Sci. 2019, 136, 48040. DOI: 10.1002/app.48040.
  • Denkbaş, E. B.; Kiliçay, E.; Birlikseven, C.; Öztürk, E. Magnetic Chitosan Microspheres: Preparation and Characterization. React. Funct. Polym. 2002, 50, 225–232. DOI: 10.1016/S1381-5148(01)00115-8.
  • Martinez-Mejía, G.; Vázquez-Torres, N. A.; Castell-Rodríguez, A.; del Río, J. M.; Corea, M.; Jiménez-Juárez, R. Synthesis of New Chitosan-Glutaraldehyde Scaffolds for Tissue Engineering Using Schiff Reactions. Colloids Surf. A 2019, 579, 123658. DOI: 10.1016/j.colsurfa.2019.123658.
  • Yuan, Q.; Venkatasubramanian, R.; Hein, S.; Misra, R. D. K. A Stimulus-Responsive Magnetic Nanoparticle Drug Carrier: Magnetite Encapsulated by Chitosan-Grafted-Copolymer. Acta Biomater. 2008, 4, 1024–1037. DOI: 10.1016/j.actbio.2008.02.002.
  • Cui, Z.; Zheng, Z.; Lin, L.; Si, J.; Wang, Q.; Peng, X.; Chen, W. Electrospinning and Crosslinking of Polyvinyl Alcohol/Chitosan Composite Nanofiber for Transdermal Drug Delivery. Adv. Polym. Technol. 2018, 37, 1917–1928. DOI: 10.1002/adv.21850.
  • Ouyang, Z.-W.; Chen, E.-C.; Wu, T.-M. Thermal Stability and Magnetic Properties of Polyvinylidene Fluoride/Magnetite Nanocomposites. Materials (Basel) 2015, 8, 4553–4564. DOI: 10.3390/ma8074553.
  • Morfin-Gutierrez, A.; Orozco, J. L. S.; García-Cerda, L. A.; Puente-Urbina, B.; Melendez-Ortiz, H. I. Preparation and Characterization of Nanocomposites Based on Poly(N-Vinylcaprolactam) and Magnetic Nanoparticles for Using as Drug Delivery System. J. Drug Deliv. Sci. Technol. 2020, 60, 102028. DOI: 10.1016/j.jddst.2020.102028.
  • Jia, Z.; Yujun, W.; Yangcheng, L.; Jingyu, M.; Guangsheng, L. In Situ Preparation of Magnetic Chitosan/Fe3O4 Composite Nanoparticles in Tiny Pools of Water-in-Oil Microemulsion. React. Funct. Polym. 2006, 66, 1552–1558. DOI: 10.1016/j.reactfunctpolym.2006.05.006.
  • Luque-Alcaraz, G. A.; Lizardi-Mendoz, J.; Goycoolea, F. M.; Higuera-Ciapara, I.; Argüelles-Monal, W. Preparation of Chitosan Nanoparticles by Nanoprecipitation and Their Ability as a Drug Nanocarrier. RSC Adv. 2016, 6, 59250–59256. DOI: 10.1039/C6RA06563E.
  • Indulekha, S.; Arunkumar, P.; Bahadur, D.; Srivastava, R. Dual Responsive Magnetic Composite Nanogels for Thermo-Chemotherapy. Colloids Surf. B Biointerf. 2017, 155, 304–313. DOI: 10.1016/j.colsurfb.2017.04.035.
  • Gao, F.; Wu, X.; Wu, D.; Yu, J.; Yao, J.; Qi, Q.; Cao, Z.; Cui, Q.; Mi, Y. Preparation of Degradable Magnetic Temperature- and Redox-Responsive Polymeric/Fe3O4 Nanocomposite Nanogels in Inverse Miniemulsions for Loading and Release of 5-Fluorouracil. Colloids Surf. A 2020, 587, 124363. DOI: 10.1016/j.colsurfa.2019.124363.
  • Iswanti, F. C.; Nurulita, I.; Djauzi, S.; Sadikin, M.; Witarto, A. B.; Yamazaki, T. Preparation, Characterization, and Evaluation of Chitosan-Based Nanoparticles as CpG ODN Carriers. Biotechnol. Biotechnol. Equip. 2019, 33, 390–396. DOI: 10.1080/13102818.2019.1578690.
  • Clogston, J. D.; Patri, A. K. Zeta Potential Measurement. Methods Mol. Biol. 2011, 697, 63–70. DOI: 10.1007/978-1-60327-198-1_6.
  • Lee, S.-K.; Park, Y.; Kim, J. Thermoresponsive Behavior of Magnetic Nanoparticle Complexed pNIPAm-co-AAc Microgels. Appl. Sci. 2018, 8, 1984. DOI: 10.3390/app8101984.
  • Wong, D. W.; Gan, W. L.; Teo, Y. K.; Lew, W. S. Heating Efficiency of Triple Vortex State Cylindrical Magnetic Nanoparticles. Nanoscale Res. Lett. 2019, 14, 376. DOI: 10.1186/s11671-019-3169-6.
  • Parmaksiz, M.; Lalegül-Ulker, O.; Vurat, M. T.; Elçin, A. E.; Elcin, Y. M. Magneto-Sensitive Decellularized Bone Matrix with or without Low Frequency-Pulsed Electromagnetic Field Exposure for the Healing of a Critical-Size Bone Defect. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 124, 112065. DOI: 10.1016/j.msec.2021.112065.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.