108
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

The synthesis of bottlebrushes with improved longer side chains by combining grafting through and grafting from methods

, , , , &
Pages 609-617 | Received 17 Jul 2023, Accepted 04 Aug 2023, Published online: 18 Aug 2023

References

  • Miyake, G. M.; Piunova, V. A.; Weitekamp, R. A.; Grubbs, R. H. Precisely Tunable Photonic Crystals from Rapidly Self-Assembling Brush Block Copolymer Blends. Angew. Chem. Int. Ed. Engl. 2012, 51, 11246–11248. DOI: 10.1002/anie.201205743.
  • Guo, T.; Yu, X.; Zhao, Y.; Yuan, X.; Li, J.; Ren, L. Structure Memory Photonic Crystals Prepared by Hierarchical Self-Assembly of Semicrystalline Bottlebrush Block Copolymers. Macromolecules 2020, 53, 3602–3610. DOI: 10.1021/acs.macromol.0c00274.
  • Xie, G.; Krys, P.; Tilton, R. D.; Matyjaszewski, K. Heterografted Molecular Brushes as Stabilizers for Water-in-Oil Emulsions. Macromolecules 2017, 50, 2942–2950. DOI: 10.1021/acs.macromol.7b00006.
  • Daniel, W. F. M.; Burdyńska, J.; Vatankhah-Varnoosfaderani, M.; Matyjaszewski, K.; Paturej, J.; Rubinstein, M.; Dobrynin, A. V.; Sheiko, S. S. Solvent-Free, Supersoft and Superelastic Bottlebrush Melts and Networks. Nat. Mater. 2016, 15, 183–189. DOI: 10.1038/nmat4508.
  • Self, J. L.; Sample, C. S.; Levi, A. E.; Li, K.; Xie, R.; de Alaniz, J. R.; Bates, C. M. Dynamic Bottlebrush Polymer Networks: Self-Healing in Super-Soft Materials. J. Am. Chem. Soc. 2020, 142, 7567–7573. DOI: 10.1021/jacs.0c01467.
  • Tan, X.; Li, B. B.; Lu, X.; Jia, F.; Santori, C.; Menon, P.; Li, H.; Zhang, B.; Zhao, J. J.; Zhang, K. Light-Triggered, Self-Immolative Nucleic Acid-Drug Nanostructures. J. Am. Chem. Soc. 2015, 137, 6112–6115. DOI: 10.1021/jacs.5b00795.
  • Müllner, M. Molecular Polymer Bottlebrushes in Nanomedicine: Therapeutic and Diagnostic Applications. Chem. Commun. (Camb.) 2022, 58, 5683–5716. DOI: 10.1039/D2CC01601J.
  • Zhang, W.; Li, Y.; Liu, L.; Sun, Q.; Shuai, X.; Zhu, W.; Chen, Y. Amphiphilic Toothbrushlike Copolymers Based on Poly(Ethylene Glycol) and Poly(ε-Caprolactone) as Drug Carriers with Enhanced Properties. Biomacromolecules 2010, 11, 1331–1338. DOI: 10.1021/bm100116g.
  • Li, H.; Sun, Z.; Jiang, S.; Lai, X.; Böckler, A.; Huang, H.; Peng, F.; Liu, L.; Chen, Y. Tadpole-like Unimolecular Nanomotor with Sub-100 nm Size Swims in a Tumor Microenvironment Model. Nano Lett. 2019, 19, 8749–8757. DOI: 10.1021/acs.nanolett.9b03456.
  • Yuan, J.; Xu, Y.; Walther, A.; Bolisetty, S.; Schumacher, M.; Schmalz, H.; Ballauff, M.; Müller, A. H. E. Water-Soluble Organo-Silica Hybrid Nanowires. Nat. Mater. 2008, 7, 718–722. DOI: 10.1038/nmat2232.
  • Bolton, J.; Bailey, T. S.; Rzayev, J. Large Pore Size Nanoporous Materials from the Self-Assembly of Asymmetric Bottlebrush Block Copolymers. Nano Lett. 2011, 11, 998–1001. DOI: 10.1021/nl103747m.
  • Huang, K.; Johnson, M.; Rzayev, J. Synthesis of Degradable Organic Nanotubes by Bottlebrush Molecular Templating. ACS Macro Lett. 2012, 1, 892–895. DOI: 10.1021/mz3002287.
  • Yin, L.; Liu, L.; Zhang, N. Brush-like Polymers: Design, Synthesis and Applications. Chem. Commun. (Camb.) 2021, 57, 10484–10499. DOI: 10.1039/D1CC03940G.
  • Kim, K.; Nam, J.; Choi, J.; Seo, M.; Bang, J. From Macromonomers to Bottlebrush Copolymers with Sequence Control: Synthesis, Properties, and Applications. Polym. Chem. 2022, 13, 2224–2261. DOI: 10.1039/D2PY00126H.
  • Radzinski, S. C.; Foster, J. C.; Chapleski, R. C.; Troya, D.; Matson, J. B. Bottlebrush Polymer Synthesis by Ring-Opening Metathesis Polymerization: The Significance of the Anchor Group. J. Am. Chem. Soc. 2016, 138, 6998–7004. DOI: 10.1021/jacs.5b13317.
  • Chen, K.; Hu, X.; Qiu, J.; Zhu, N.; Guo, K. Synthesis of Bottlebrush Polymers by Ring-Opening Metathesis Polymerization. Progr. Chem. 2020, 32, 93–102. DOI: 10.7536/PC190607.
  • Blosch, S. E.; Alaboalirat, M.; Eades, C. B.; Scannelli, S. J.; Matson, J. B. Solvent Effects in Grafting-through Ring-Opening Metathesis Polymerization. Macromolecules 2022, 55, 3522–3532. DOI: 10.1021/acs.macromol.2c00254.
  • Qiao, Y.; Yuan, X.; Zhao, Y.; Ren, L. Ceiling Degree of Polymerization for Brush Polymers Prepared via ROMP of Poly(tert-Butyl Acrylate) Macromonomers. Chem. Res. Chin. Univ. 2018, 34, 828–832. DOI: 10.1007/s40242-018-8126-x.
  • Xiao, L.; Chen, Y.; Zhang, K. Efficient Metal-Free “Grafting onto” Method for Bottlebrush Polymers by Combining RAFT and Triazolinedione-Diene Click Reaction. Macromolecules 2016, 49, 4452–4461. DOI: 10.1021/acs.macromol.6b00782.
  • Xiao, L.; Qu, L.; Zhu, W.; Wu, Y.; Liu, Z.; Zhang, K. Donut-Shaped Nanoparticles Templated by Cyclic Bottlebrush Polymers. Macromolecules 2017, 50, 6762–6770. DOI: 10.1021/acs.macromol.7b01512.
  • Xiao, L.; Li, J.; Peng, G.; Huang, G. The Effect of Grafting Density and Side Chain Length on the Conformation of PEG Grafted Bottlebrush Polymers. React. Funct. Polym. 2020, 156, 104736. DOI: 10.1016/j.reactfunctpolym.2020.104736.
  • Sprafke, J. K.; Spruell, J. M.; Mattson, K. M.; Montarnal, D.; McGrath, A. J.; Pötzsch, R.; Miyajima, D.; Hu, J.; Latimer, A. A.; Voit, B. I.; et al. Revisiting Thiol-Yne Chemistry: Selective and Efficient Monoaddition for Block and Graft Copolymer Formation. J. Polym. Sci. Part A: Polym. Chem. 2015, 53, 319–326. DOI: 10.1002/pola.27345.
  • Yan, Y.; Shi, Y.; Zhu, W.; Chen, Y. Highly Efficient Synthesis of Cylindrical Polymer Brushes with Various Side Chains via Click Grafting-onto Approach. Polymer 2013, 54, 5634–5642. DOI: 10.1016/j.polymer.2013.08.036.
  • Hou, W.; Wu, J.; Li, Z.; Zhang, Z.; Shi, Y.; Chen, Y. Efficient Synthesis and PISA Behavior of Molecular Bottlebrush Block Copolymers via a Grafting-From Strategy through RAFT Dispersion Polymerization. Macromolecules 2023, 56, 824–832. DOI: 10.1021/acs.macromol.2c02233.
  • Hou, W.; Li, Z.; Xu, L.; Li, Y.; Shi, Y.; Chen, Y. High-Yield Synthesis of Molecular Bottlebrushes via PISA-Assisted Grafting-from Strategy. ACS Macro Lett. 2021, 10, 1260–1265. DOI: 10.1021/acsmacrolett.1c00565.
  • Stobener, D. D.; Scholz, J.; Schedler, U.; Weinhart, M. Switchable Oligo(Glycidyl Ether) Acrylate Bottlebrushes “Grafted-from” Polystyrene Surfaces: A Versatile Strategy toward Functional Cell Culture Substrates. Biomacromolecules 2018, 19, 4207–4218. DOI: 10.1021/acs.biomac.8b00933.
  • Wang, Y.; Ren, R.; Ling, J.; Sun, W.; Shen, Z. One-Pot “Grafting-from” Synthesis of Amphiphilic Bottlebrush Block Copolymers Containing PLA and PVP Side Chains via Tandem ROP and RAFT Polymerization. Polymer 2018, 138, 378–386. DOI: 10.1016/j.polymer.2018.01.071.
  • Arrington, K. J.; Radzinski, S. C.; Drummey, K. J.; Long, T. E.; Matson, J. B. Reversibly Cross-Linkable Bottlebrush Polymers as Pressure-Sensitive Adhesives. ACS Appl. Mater. Interfaces 2018, 10, 26662–26668. DOI: 10.1021/acsami.8b08480.
  • Fenyves, R.; Schmutz, M.; Horner, I. J.; Bright, F. V.; Rzayev, J. Aqueous Self-Assembly of Giant Bottlebrush Block Copolymer Surfactants as Shape-Tunable Building Blocks. J. Am. Chem. Soc. 2014, 136, 7762–7770. DOI: 10.1021/ja503283r.
  • Pal, D.; Garrison, J. B.; Miao, Z. H.; Diodati, L. E.; Veige, A. S.; Sumerlin, B. S. Nanobowls from Amphiphilic Core–Shell Cyclic Bottlebrush Polymers. Macromolecules 2022, 55, 7446–7453. DOI: 10.1021/acs.macromol.2c01232.
  • Cheng, G.; Böker, A.; Zhang, M.; Krausch, G.; Müller, A. H. E. Amphiphilic Cylindrical Core − Shell Brushes via a “Grafting from” Process Using ATRP. Macromolecules 2001, 34, 6883–6888. DOI: 10.1021/ma0013962.
  • Thiessen, W.; Wolff, T. NMRP and ATRP Double Initiators for the Formation of Binary Polymer Brushes via Grafting-From Methods. Des. Monomers Polym. 2011, 14, 287–302. DOI: 10.1163/138577211X557567.
  • Gromadzki, D.; Štĕpánek, P.; Makuška, R. Synthesis of Densely Grafted Copolymers with Tert-Butyl Methacrylate/2-(Dimethylamino Ethyl) Methacrylate Side Chains as Precursors for Brush Polyelectrolytes and Polyampholytes. Mater. Chem. Phys. 2013, 137, 709–715. DOI: 10.1016/j.matchemphys.2012.09.012.
  • Lee, H.-I.; Jakubowski, W.; Matyjaszewski, K.; Yu, S.; Sheiko, S. S. Cylindrical Core-Shell Brushes Prepared by a Combination of ROP and ATRP. Macromolecules 2006, 39, 4983–4989. DOI: 10.1021/ma0604688.
  • Kerr, A.; Hartlieb, M.; Sanchis, J.; Smith, T.; Perrier, S. Complex Multiblock Bottle-Brush Architectures by RAFT Polymerization. Chem. Commun. (Camb.) 2017, 53, 11901–11904. DOI: 10.1039/C7CC07241D.
  • Leroux, F.; Montembault, V.; Pioge, S.; Pascual, S.; Fontaine, L. Poly(1,4-Butadiene)-Graft-Poly(L-Lactide) via the Grafting-from Strategy. Polym. Bull. 2017, 74, 4415–4422. DOI: 10.1007/s00289-017-1961-y.
  • Leroux, F.; Montembault, V.; Pioge, S.; Pascual, S.; Brotons, G.; Fontaine, L. High Molar Mass Poly(1,4-Butadiene)-Graft-Poly(ε-Caprolactone) Copolymers by ROMP: Synthesis via the Grafting-From Route and Self-Assembling Properties. Macromolecules 2016, 49, 4739–4745. DOI: 10.1021/acs.macromol.6b00786.
  • Min, K.; Yu, S.; Lee, H.; Mueller, L.; Sheiko, S. S.; Matyjaszewski, K. High Yield Synthesis of Molecular Brushes via ATRP in Miniemulsion. Macromolecules 2007, 40, 6557–6563. DOI: 10.1021/ma071137d.
  • Matson, J. B.; Grubbs, R. H. Synthesis of Fluorine-18 Functionalized Nanoparticles for Use as In Vivo Molecular Imaging Agents. J. Am. Chem. Soc. 2008, 130, 6731–6733. DOI: 10.1021/ja802010d.
  • Convertine, A. J.; Benoit, D. S. W.; Duvall, C. L.; Hoffman, A. S.; Stayton, P. S. Development of a Novel Endosomolytic Diblock Copolymer for siRNA Delivery. J. Control. Release 2009, 133, 221–229. DOI: 10.1016/j.jconrel.2008.10.004.
  • Love, J. A.; Morgan, J. P.; Trnka, T. M.; Grubbs, R. H. A Practical and Highly Active Ruthenium-Based Catalyst That Effects the Cross Metathesis of Acrylonitrile. Angew. Chem. Int. Ed. 2002, 41, 4035–4037 DOI: 10.1002/1521-3773(20021104)41:21.<4035::AID-ANIE4035 > 3.0.CO;2-I.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.