103
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Nanomolar detection of hypochlorite in ground water samples by a norbornene-based polymeric sensor via unusual fluorescence turn-on response

, &
Pages 751-763 | Received 25 May 2023, Accepted 01 Sep 2023, Published online: 22 Sep 2023

References

  • Qiao, L.; Nie, H.; Wu, Y.; Xin, F.; Gao, C.; Jing, J.; Zhang, X. An Ultrafast Responsive BODIPY-Based Fluorescent Probe for the Detection of Endogenous Hypochlorite in Live Cells. J. Mater. Chem. B 2017, 5, 525–530. DOI: 10.1039/c6tb02774a.
  • Goswami, S.; Das, K. A.; Manna, A.; Maity, K. A.; Saha, P.; Quah, K. C.; Fun, K. H.; Abdel-Aziz, H. A. Nanomolar Detection of Hypochlorite by a Rhodamine-Based Chiral Hydrazide in Absolute Aqueous Media: Application in Tap Water Analysis with Live-Cell Imaging. Anal. Chem. 2014, 86, 6315–6322. DOI: 10.1021/ac500418k.
  • Duan, C.; Won, M.; Verwilst, P.; Xu, J.; Kim, H. S.; Zeng, L.; Kim, J. S. In Vivo Imaging of Endogenously Produced HClO in Zebrafish and Mice Using a Bright, Photostableratiometric Fluorescent Probe. Anal. Chem. 2019, 91, 4172–4178. DOI: 10.1021/acs.analchem.9b00224.
  • Lv, J.; Wang, F.; Wei, T.; Chen, X. Highly Sensitive and Selective Fluorescent Probes for the Detection of HOCl/OCl- Based on Fluorescein Derivatives. Ind. Eng. Chem. Res. 2017, 56, 3757–3764. DOI: 10.1021/acs.iecr.7b00381.
  • Kang, H.; Si, Y.; Liu, Y.; Zhang, X.; Zhang, W.; Zhao, Y.; Yang, B.; Liu, Y.; Liu, Z. Photophysical/Chemistry Properties of distyryl-BODIPY Derivatives: An Experimental and Density Functional Theoretical Study. J. Phys. Chem. A 2018, 122, 5574–5579. DOI: 10.1021/acs.jpca.8b02656.
  • Lu, E. M.; Ucucu, M.; Karakus, E. A BODIPY Aldoxime-Based Chemodosimeter for Highly Selective and Rapid Detection of Hypochlorous Acid Chem. Commun 2013, 49, 7836.
  • Goswami, S.; Manna, A.; Paul, S.; Quah, C. K.; Fun, H.-K. Rapid and Ratiometricdetection of Hypochlorite with Real Application in Tap Water: Molecules to Low-Cost Devices (TLC Sticks). Chem Commun (Camb) 2013, 49, 11656–11658. DOI: 10.1039/c3cc47121g.
  • Wang, X.; Wang, X.; Feng, Y.; Zhu, M.; Yin, H.; Xiang, Q. G.; Meng, X. A Two-Photon Fluorescent Probe for Detecting Endogenous Hypochlorite in Living Cells. Dalton Trans. 2015, 44, 6613–6619. DOI: 10.1039/c5dt00012b.
  • Shen, X. B.; Qian, Y.; Qi, Z. Q.; Lu, C. G.; Sun, Q.; Xia, X.; Cui, P. Y. Near-Infrared BODIPY-Based Two-Photon ClO- Probe Based on Thiosemicarbazide Desulfurization Reaction: Naked-Eye Detection and Mitochondrial Imaging. J. Mater. Chem. B 2017, 5, 5854–5861. DOI: 10.1039/c7tb01344b.
  • Wu, L.; Yang, Q.; Liu, L.; Sedgwick, C. A.; Alexander, J. C.; Bull, S. D.; Huang, C.; James, T. D. ESIPT-Based Fluorescence Probe for the Rapid Detection of Hypochlorite (HOCl/ClO). Chem. Commun. (Camb.) 2018, 54, 8522–8525. DOI: 10.1039/c8cc03717e.
  • Zeng, Y. N.; Zheng, H. Q.; He, X. H.; Cao, J. G.; Wang, B.; Wu, K.; Lin, J. Z. Dual-Emissive Metal-Organic Framework: A Novel Turn-on and Ratiometric Fluorescent Sensor for Highly Efficient and Specific Detection of Hypochlorite. Dalton Trans. 2020, 49, 9680–9687. DOI: 10.1039/d0dt02041a.
  • Manjare, S. T.; Kim, J.; Lee, J.; Churchill, G. D. Facile meso-BODIPY Annulation and Selective Sensing of Hypochlorite in Water. Org. Lett. 2014, 16, 520–523. DOI: 10.1021/ol403405n.
  • Sun, N. Z.; Liu, F. Q.; Chen, Y.; Kwong, P.; Tam, H.; Yang, D. A Highly Specific BODIPY-Based Fluorescent Probe for the Detection of Hypochlorous Acid. Org. Lett. 2008, 10, 2171–2174. DOI: 10.1021/ol800507m.
  • Li, G.; Zhu, D.; Liu, Q.; Xue, L.; Jiang, H. A Strategy for Highly Selective Detection and Imaging of Hypochlorite Using Selenoxide Elimination, Org. Lett 2013, 15, 2002–2005.
  • Huyskens, Z. T.; Lily, M.; Sutradhar, D.; Chandra, K. C. Theoretical Study of the O···Cl Interaction in Fluorinated Dimethyl Ethers Complexed with a Cl Atom: Is It through a Two-Center–Three-Electron Bond? J. Phys. Chem. A 2013, 117, 8010–8016. DOI: 10.1021/jp4046353.
  • Li, T.; Wang, L.; Lin, S.; Xu, X.; Liu, M.; Shen, S.; Yan, Z.; Mo, R. Rational Design and Bioimaging Applications of Highly Specific “turn-On” Fluorescent Probe for Hypochlorite. Bioconjug. Chem. 2018, 29, 2838–2845. DOI: 10.1021/acs.bioconjchem.8b00430.
  • Hu, Y.; Xie, G.; Stanbury, M. D. Oxidations at Sulfurcenters by Aqueous Hypochlorous Acid and Hypochlorite: Cl + versus O Atom Transfer. Inorg. Chem. 2017, 56, 4047–4056. DOI: 10.1021/acs.inorgchem.6b03182.
  • Shunmugam, R.; Gabriel, J. G.; Smith, E. C.; Aamer, A. K.; Tew, G. N. A Highly Selective Colorimetric Aqueous Sensor for Mercury. Chemistry 2008, 14, 3904–3907. DOI: 10.1002/chem.200701895.
  • Csordas, V.; Bubnis, B.; Fabian, I.; Gordon, G. Kinetics and Mechanism of Catalytic Decomposition and Oxidation of Chlorine Dioxide by the Hypochlorite Ion. Inorg. Chem. 2001, 40, 1833–1836. DOI: 10.1021/ic001106y.
  • Yu, G. H.; Francis, S. J. Initio and RRKM Study of the Reaction of ClO with HOCO Radicals. J. Phys. Chem. A 2009, 113, 12932–12941. DOI: 10.1021/jp9040088.
  • Zhu, B.; Li, P.; Shu, W.; Wang, X.; Liu, C.; Wang, Y.; Wang, Z.; Wang, Y.; Tang, B. Highly Specific and Ultrasensitive Two-Photon Fluorescence Imaging of Native HOCl in Lysosomes and Tissues Based on Thiocarbamate Derivatives. Anal. Chem. 2016, 88, 12532–12538. DOI: 10.1021/acs.analchem.6b04392.
  • Cong, Z.; Yanagisawa, S.; Kurahashi, T.; Ogura, T.; Nakashima, S.; Fujii, H. Synthesis, Characterization, and Reactivity of Hypochlorite Iron (III) Porphyrin Complexes. J. Am. Chem. Soc. 2012, 134, 20617–20620. DOI: 10.1021/ja3108774.
  • Pak, L. Y.; Park, J. S.; Song, G.; Yim, Y.; Kang, H.; Kim, M. H.; Bouffard, J.; Yoon, J. Endoplasmic Reticulum-Targeted Ratio Metric N-Heterocyclic Carbeneborane Probe for Two-Photon Microscopic Imaging of Hypochlorous Acid. Anal. Chem. 2018, 90, 12937–12943. DOI: 10.1021/acs.analchem.8b03565.
  • Ashoka, H. A.; Ali, F.; Tiwari, R.; Kumari, R.; Pramanik, K. S.; Das, A. Recent Advances in Fluorescent Probes for Detection of HOCl and HNO. ACS Omega. 2020, 5, 1730–1742. DOI: 10.1021/acsomega.9b03420.
  • Zuo, Y.; Zhang, Y.; Dong, B.; Gou, Z.; Yang, T.; Lin, W. Binding Reaction Sites to Polysiloxanes: A Unique Fluorescent Probe for Reversible Detection of -OCl/GSH Pair and the in-Situ Imaging in Live Cells and Zebrafish. Anal. Chem. 2019, 91, 1719–1723. DOI: 10.1021/acs.analchem.8b05465.
  • Wu, L.; Wu, I.; DuFort, C. C.; Carlson, A. M.; Wu, X.; Chen, L.; Kuo, T. C.; Qin, Y.; Yu, J.; Hingorani, R. S.; Chiu, T. D. Photostableratiometricpdot Probe for in Vitro and in Vivo Imaging of Hypochlorous Acid. J. Am. Chem. Soc. 2017, 139, 6911–6918. DOI: 10.1021/jacs.7b01545.
  • Shunmugam, R.; Gabriel, G. J.; Aamer, K. A.; Tew, G. N. Metal–Ligand‐Containing Polymers: Terpyridine as the Supramolecular Unit. Macromol. Rapid Commun. 2010, 31, 784–793. DOI: 10.1002/marc.200900869.
  • Prasse, C.; von Gunten, U.; Sedlak, D. L. Chlorination of Phenols Revisited: Unexpected Formation of α, β-Unsaturated C4-Dicarbonyl Ring Cleavage Products. Environ. Sci. Technol. 2020, 54, 826–834. DOI: 10.1021/acs.est.9b04926.
  • He, L.; Xiong, H.; Wang, B.; Zhang, Y.; Wang, J.; Zhang, H.; Li, H.; Yang, Z.; Song, X. Rational Design of a Two-Photon Ratiometric Fluorescent Probe for Hypochlorous Acid with a Large Stokes Shift. Anal. Chem. 2020, 92, 11029–11034. DOI: 10.1021/acs.analchem.0c00030.
  • Singha, J.; Samanta, T.; Shunmugam, R. Unusual Redshift Due to Selective Hydrogen Bonding between F− Ion and Sensor Motif: A Naked-Eye Colorimetric Sensor for F− Ions in an Aqueous Environment. Mater. Adv. 2020, 1, 2346–2356. DOI: 10.1039/D0MA00092B.
  • Gong, J.; Liu, C.; Cai, S.; He, S.; Zhao, L.; Zeng, X. Novel near-Infrared Fluorescent Probe with a Large Stokes Shift for Sensing Hypochlorous Acid in Mitochondria. Org. Biomol. Chem. 2020, 18, 7656–7662. DOI: 10.1039/d0ob01563f.
  • Samanta, T.; Das, N.; Patra, D.; Kumar, P.; Sharmistha, B.; Shunmugam, R. Reaction Triggered ESIPT-Active Water-Soluble Polymeric Probe for Potential Detection of Hg2+/CH3Hg+ in Both Environmental and Biological Systems. ACS Sustainable Chem. Eng. 2021, 9, 5196–5203. DOI: 10.1021/acssuschemeng.1c00437.
  • Liu, H.; Sun, M.; Su, Y.; Deng, D.; Hu, J.; Lv, Y. Chemiluminescence of Black Phosphorus Quantum Dots Induced by Hypochlorite and Peroxide. Chem. Commun. (Camb.) 2018, 54, 7987–7990. DOI: 10.1039/c8cc04513e.
  • Ren, M.; Zhou, K.; He, L.; Lin, W. Mitochondria and Lysosome-Targetable Fluorescent Probes for HOCl: Recent Advances and Perspectives. J. Mater. Chem. B 2018, 6, 1716–1733. DOI: 10.1039/c7tb03337k.
  • Sarkar, S.; Shunmugam, R. Polynorbornene Derived 8-Hydroxyquinoline Paper Strips for Ultrasensitive Chemical Nerve Agent Surrogate Sensing. Chem. Commun. (Camb.) 2014, 50, 8511–8513. DOI: 10.1039/c4cc03361b.
  • Goswami, S.; Paul, S.; Manna, A. Highly Reactive (<1 Min) Ratiometric “Naked Eye” Detection of Hypochlorite with Real Application in Tap Water. Dalton Trans. 2013, 42, 97–10101.
  • Chen, G.; Song, F.; Wang, J.; Yang, Z.; Sun, S.; Fan, J.; Qiang, X.; Wang, X.; Dou, B.; Peng, X. FRET Spectral Unmixing: A Ratiometric Fluorescent Nanoprobe for Hypochlorite. Chem. Commun. (Camb.) 2012, 48, 2949–2951. DOI: 10.1039/c2cc17617c.
  • Chen, X.; Lee, A. K.; Ha, M. E.; Lee, M. K.; Seo, Y. Y.; Choi, H. K.; Kim, N. H.; Kim, J. M.; Cho, S. C.; Lee, Y. S.; et al. A Specific and Sensitive Method for Detection of Hypochlorous Acid for the Imaging of Microbe-Induced HOCl Production. Chem. Commun. (Camb.) 2011, 47, 4373–4375. DOI: 10.1039/c1cc10589b.
  • Li, M.; Wang, Y.; Yang, Y.; Gao, Y.; Zhao, M.; Zheng, M.; Peng, S. Oximated Ruthenium Tris-Bipyridyl Complex: Synthesis and Luminescent Response Specifically for ClO− in Water Containing Multiple Ions. Dalton Trans. 2015, 44, 14071–14076. DOI: 10.1039/c5dt02097b.
  • Zhi, L.; Wang, Z.; Liu, J.; Liu, W.; Zhang, H.; Chen, F.; Wang, B. White Emission Magnetic Nanoparticles as Chemosensors for Sensitive Colorimetric and Ratiometric Detection, and Degradation of ClO− and SCN− in Aqueous Solutions Based on a Logic Gate Approach. Nanoscale 2015, 7, 11712–11719. DOI: 10.1039/c5nr02307f.
  • (a) Samanta, T.; Das, N.; Singha, J.; Shunmugam, R. Unusual Red-Orange Emission from Rhodamine Derived Polynorbornene for Selective Binding to Fe3+ Ions in an Aqueous Environment. Anal. Methods 2020, 12, 4159–4165. DOI: 10.1039/D0AY00505C.
  • Kim, J.; Park, J.; Lee, H.; Choi, Y.; Kim, Y. A Boronate-Based Fluorescent Probe for the Selective Detection of Cellular Peroxynitrite. Chem. Commun. (Camb.) 2014, 50, 9353–9356. DOI: 10.1039/c4cc02943g.
  • Qiao, W.; Yao, P.; Chen, Y.; Xiao, Q.; Zhang, L.; Li, Z. Squaraine-Based AIE-Gens for Reversible Mechanochromism, Sensitive and Selective Hypochlorite Detection and Photostable Far-Red Fluorescence Cell Imaging. Mater. Chem. Front. 2020, 4, 2688–2696. DOI: 10.1039/D0QM00357C.
  • Long, L.; Wu, Y.; Wang, L.; Gong, A.; Hu, F.; Zhang, C. A Fluorescent Probe for Hypochlorite Based on the Modulation of the Unique Rotation of the N–N Single Bond in Acetohydrazide. Chem. Commun. (Camb.) 2015, 51, 10435–10438. DOI: 10.1039/c5cc03972j.
  • Ding, S.; Zhang, Q.; Xue, S.; Feng, G. Real-Time Detection of Hypochlorite in Tap Water and Biological Samples by a Colorimetric, Ratiometric, and near-Infrared Fluorescent Turn-on Probe. Analyst 2015, 140, 4687–4693. DOI: 10.1039/c5an00465a.
  • Yang, Y.; Gao, C.; Chen, J.; Zhang, N.; Dong, D. A Pyrene-Based Fluorescent and Colorimetric Chemo Dosimeter for Detection of -OClions. Anal. Methods 2016, 8, 805–809. DOI: 10.1039/C5AY02685G.
  • Guo, J.; Zhang, Z.; Kuai, Z.; Wang, R.; Yang, Q.; Shan, Y.; Li, Y. A New Turn-on Fluorescent Probe towards Hypochlorite in Living Cells. Anal. Methods 2017, 9, 864–870. DOI: 10.1039/C6AY02819E.
  • Yang, X.; He, L.; Xu, K.; Yang, Y.; Lin, W. The Development of an ICT-Based Formaldehyde Responsive Fluorescence Turn-on Probe with a High Signal-to-Noise Ratio. New J. Chem. 2018, 42, 12361–12364. DOI: 10.1039/C8NJ02467G.
  • Lv, X.; Yuan, X.; Wang, Y.; Guo, W. A Naphthylamide Based Fast and Selective Fluorescent Probe for Hypochlorous Acid/Hypochlorite and Its Application for Bioimaging. New J. Chem. 2018, 42, 15105–15110. DOI: 10.1039/C8NJ03208D.
  • Zeng, X. Z.; Gu, J.; Liu, N. Y.; Li, D. D.; Yang, S. Y.; Wang, Z. B.; Zhu, L. H. A Fluorescent Sensor for Selective Detection of Hypochlorite and Its Application in Arabidopsisthaliana. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2021, 244, 118830. DOI: 10.1016/j.saa.2020.118830.
  • Li, H.; Miao, Y.; Liu, Z.; Wu, X.; Piao, C.; Zhou, X. A Mitochondria-Targeted Flfluorescent Probe for Fast Detecting Hypochlorite in Living Cells. Dyes Pigments 2020, 176, 108192. DOI: 10.1016/j.dyepig.2020.108192.
  • Chu, C. J.; Wu, G. S.; Ma, H. I.; Venkatesan, P.; Thirumalaivasan, N.; Wu, S. A Fluorescent Turn-on Probe for Detection of Hypochlorus Acid and Its Bioimaging in Living Cells. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2020, 233, 118234. DOI: 10.1016/j.saa.2020.118234.
  • Sarkar, S.; Shunmugam, R. Unusual Red Shift of the Sensor While Detecting the Presence of Cd2+ in Aqueous Environment ACS. ACS Appl. Mater. Interfaces. 2013, 5, 7379–7383. DOI: 10.1021/am401714j.
  • b) Samanta, T.; Das, N.; Shunmugam, R. Intramolecular Charge Transfer-Based Rapid Colorimetric in-Field Fluoride Ion Sensors. ACS Sustainable Chem. Eng. 2021, 9, 10176–10183. DOI: 10.1021/acssuschemeng.1c02344.
  • c) Samanta, T.; Das, N.; Patra, D.; Kumar, P.; Shunmugam, R. Engineering a Bromophenol Derivative for Rapid Detection of Hg2+/CH3Hg+ in Both Environmental and Biological Samples through a Unique Activation Process. RSC Sustain 2023, 1, 640–647. DOI: 10.1039/D3SU00012E.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.