261
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Use of polyvinyl alcohol-based cationic hydrogels modified with gold nanoparticles as drug and gene delivery systems with enhanced antibacterial properties

ORCID Icon & ORCID Icon
Pages 778-789 | Received 09 Aug 2023, Accepted 08 Sep 2023, Published online: 22 Sep 2023

References

  • Salari, N.; Faraji, F.; Torghabeh, F. M.; Faraji, F.; Mansouri, K.; Abam, F.; Shohaimi, S.; Akbari, H.; Mohammadi, M. Polymer-based drug delivery systems for anticancer drugs: a systematic review. Cancer Treat Res. Commun. 2022, 32, 100605. DOI: 10.1016/j.ctarc.2022.100605.
  • Sana, B.; Finne-Wistrand, A.; Pappalardo, D. Recent development in near infrared light-responsive polymeric materials for smart drug-delivery systems. Mat. Today Chem. 2022, 25, 100963. DOI: 10.1016/j.mtchem.2022.100963.
  • Borandeh, S.; Bochove, B. V.; Teotia, A.; Seppälä, J. Polymeric drug delivery systems by additive manufacturing. Adv. Drug Deliv. Rev. 2021, 173, 349–373. DOI: 10.1016/j.addr.2021.03.022.
  • Shariatinia, Z. Big family of nano- and microscale drug delivery systems ranging from inorganic materials to polymeric and stimuli-responsive carriers as well as drug-conjugates. J. Drug Deliv. Sci. Technol. 2021, 66, 102790. DOI: 10.1016/j.jddst.2021.102790.
  • Zhao, S.; Huang, C.; Yue, X.; Li, X.; Zhou, P.; Wu, A.; Chen, C.; Qu, Y.; Zhang, C. Application advance of electrosprayed micro/nanoparticles based on natural or synthetic polymers for drug delivery system. Mater. Des. 2022, 220, 110850. DOI: 10.1016/j.matdes.2022.110850.
  • Ozay, O.; Ilgin, P.; Ozay, H.; Gungor, Z.; Yilmaz, B.; Kıvanç, M. R. The preparation of various shapes and porosities of hydroxyethyl starch/p(HEMA-co-NVP) IPN hydrogels as programmable carrier for drug delivery. J. Macromol. Sci. A 2020, 57, 379–387. DOI: 10.1080/10601325.2019.1700803.
  • Yilmaz, B.; Ozay, O. Synthesis, characterization and biomedical applications of p(Hema-co-Aptmacl) hydrogels crosslinked with modified silica nanoparticles. Biointerface Res. Appl. Chem. 2022, 12, 3664–3680. DOI: 10.33263/BRIAC123.36643680.
  • Durmuş, S.; Yılmaz, B.; Onder, A.; Ilgin, P.; Ozay, H.; Ozay, O. An innovative approach to use zeolite as crosslinker for synthesis of p(HEMA-co-NIPAM) hydrogel. Monatsh. Chem. 2022, 153, 369–382. DOI: 10.1007/s00706-022-02908-w.
  • Liu, Y.; He, W.; Zhang, Z.; Lee, B. P. Recent developments in tough hydrogels for biomedical applications. Gels 2018, 4, 46. DOI: 10.3390/gels4020046.
  • Ilgin, P.; Ozay, H.; Ozay, O. Synthesis and characterization of pH responsive alginate based-hydrogels as oral drug delivery carrier. J. Polym. Res. 2020, 27, 251. DOI: 10.1007/s10965-020-02231-0.
  • Cui, P.; Pan, P.; Qin, L.; Wang, X.; Chen, X.; Deng, Y.; Zhang, X. Nanoengineered hydrogels as 3D biomimetic extracellular matrix with injectable and sustained delivery capability for cartilage regeneration. Bioact. Mater. 2023, 19, 487–498. DOI: 10.1016/j.bioactmat.2022.03.032.
  • Liu, Z.; Tang, W.; Liu, J.; Han, Y.; Yan, Q.; Dong, Y.; Liu, X.; Yang, D.; Ma, G.; Cao, H. A novel sprayable thermosensitive hydrogel coupled with zinc modified metformin promotes the healing of skin wound. Bioact. Mater. 2023, 20, 610–626. DOI: 10.1016/j.bioactmat.2022.06.008.
  • Huang, X.; Ni, Z.; Su, H.; Shang, Y.; Liu, H.; He, Y.; Meng, H.; Dong, Y. Cellulose nanocrystalline and sodium benzenesulfonate-doped polypyrrole nano-hydrogel/au composites for ultrasensitive detection of carcinoembryonic antigen. New J. Chem. 2021, 45, 5551–5560. DOI: 10.1039/D1NJ00360G.
  • Yu, M.; Liu, W.; Zhang, H.; Liu, G.; Luo, F.; Cao, D. Construction of high-performance polymer hydrogel composite materials for artificial bionic organs. J. Exp. Nanosci. 2022, 17, 339–350. DOI: 10.1080/17458080.2022.2073999.
  • Wang, T.; Zhang, F.; Zhao, R.; Wang, C.; Hu, K.; Sun, Y.; Politis, C.; Shavandi, A.; Nie, L. Polyvinyl alcohol/sodium alginate hydrogels incorporated with silver nanoclusters via green tea extract for antibacterial applications. Des. Monomers Polym. 2020, 23, 118–133. DOI: 10.1080/15685551.2020.1804183.
  • Rivera-Hernández, G.; Antunes-Ricardo, M.; Martínez-Morales, P.; Sánchez, M. L. Polyvinyl alcohol based-drug delivery systems for cancer treatment. Int. J. Pharm. 2021, 600, 120478. DOI: 10.1016/j.ijpharm.2021.120478.
  • Sharmin, E.; Batubara, A. S.; Tamboosi, B. A.; Khozay, E. B. A.; Alamoudi, M. K.; Aidaroos, O. Z. A.; Albenayan, J. A.; Lamfon, M. Y.; Sindi, A. B. H.; Madboly, L. A. A.; et al. PVA nanocomposite hydrogel loaded with silver nanoparticles enriched nigella sativa oil. Inorg. Nano.-Met. 2022, 52, 1134–1142. DOI: 10.1080/24701556.2021.1963277.
  • Hasan, M. S.; Foisal, J. A.; Khan, G. M. A.; Jahan, R.; Hasanuzzaman, M.; Alam, M. S.; Karim, M. M.; Gafur, M. A.; Khan, M. A.; Sabur, M. A. Microfibrillated cellulose-silver nanocomposite based PVA hydrogels and their enhanced physical, mechanical and antibacterial properties. J. Polym. Environ. 2022, 30, 2875–2887. DOI: 10.1007/s10924-022-02406-4.
  • Tabujew, I.; Peneva, K. Chapter 1: Functionalization of cationic polymers for drug delivery applications. Ed. Samal, S. K. and Dubruel, P. Cationic Polymers in Regenerative Medicine RSC Polymer Chemistry Series. Royal Society of Chemistry, 2014, 1–29. DOI: 10.1039/9781782620105-00001.
  • Jaeger, W.; Bohrisch, J.; Laschewsky, A. Synthetic polymers with quaternary nitrogen atoms-synthesis and structure of the most used type of cationic polyelectrolytes. Prog. Polym. Sci 2010, 35, 511–577. DOI: 10.1016/j.progpolymsci.2010.01.002.
  • Nikzamir, M.; Akbarzadeh, A.; Panahi, Y. An overview on nanoparticles used in biomedicine and their cytotoxicity. J. Drug Deliv. Sci. Technol. 2021, 61, 102316. DOI: 10.1016/j.jddst.2020.102316.
  • Biondi, M.; Borzacchiello, A.; Mayol, L.; Ambrosio, L. Nanoparticle-integrated hydrogels as multifunctional composite materials for biomedical applications. Gels 2015, 1, 162–178. DOI: 10.3390/gels1020162.
  • Ravi, R.; Khan, A. M.; Mishra, A. Biomedical properties of metal nanoparticles for cancer therapeutics and management. Biosci. Biotech. Res. Comm. 2020, 13, 1717–1722. DOI: 10.21786/bbrc/13.4/13.
  • Nasef, S. M.; Khozemy, E. E.; Mahmoud, G. A. Characterization and in vitro drug release properties of chitosan/acrylamide/gold nanocomposite prepared by gamma irradiation. Int. J. Polym. Mater. Polym. Biomater. 2019, 68, 723–732. DOI: 10.1080/00914037.2018.1493685.
  • Singh, J.; Kumar, S.; Dhaliwal, A. S. Controlled release of amoxicillin and antioxidant potential of gold nanoparticles-xanthan gum/poly (acrylic acid) biodegradable nanocomposite. J. Drug Deliv. Sci. Technol 2020, 55, 101384. DOI: 10.1016/j.jddst.2019.101384.
  • Dykman, L. A.; Khlebtsov, N. G. Gold nanoparticles in biology and medicine: recent advances and prospects. Acta Nat 2011, 3, 34–55. DOI: 10.32607/20758251-2011-3-2-34-55.
  • Sekar, V.; Al-Ansari, M. M.; Narenkumar, J.; Al-Humaid, L.; Arunkumar, P.; Santhanam, A. Synthesis of gold nanoparticles (AuNPs) with improved anti-diabetic, antioxidant and anti-microbial activity from Physalis Minima. J. King Saud Univ. Sci. 2022, 34, 102197. DOI: 10.1016/j.jksus.2022.102197.
  • Durmuş, S.; Yilmaz, B.; Kıvanç, M. R.; Onder, A.; Ilgin, P.; Ozay, H.; Ozay, O. Synthesis, characterization, and in vitro drug release properties of AuNPs/p(AETAC-co-VI)/Q nanocomposite hydrogels. Gold Bull. 2021, 54, 75–87. DOI: 10.1007/s13404-021-00295-4.
  • Durmus, S.; Ozay, O. Synthesis and characterization of methacrylic acid based amphoteric hydrogels: use as a dual drug delivery system. J. Macromol. Sci. A 2022, 59, 646–656. DOI: 10.1080/10601325.2022.2107933.
  • Ozsoy, F.; Ozdilek, B.; Onder, A.; Ilgin, P.; Ozay, H.; Ozay, O. Graphene nanoplate incorporated gelatin/poly(2-(acryloyloxy)ethyl trimethylammonium chloride) composites hydrogel for highly effective removal of alizarin red s from aqueous solution. J. Polym. Res. 2022, 29, 481. DOI: 10.1007/s10965-022-03327-5.
  • Ozay, H.; Ilgin, P.; Ozyurt, C.; Ozay, O. The single-step synthesis of thiol-functionalized phosphazene-based polymeric microspheres as drug carrier. Polym.- Plast. Tech. Mat. 2020, 59, 1944–1955. DOI: 10.1080/25740881.2020.1784212.
  • Ilgin, P.; Ozay, H.; Ozay, O. A new dual stimuli responsive hydrogel: modeling approaches for the prediction of drug loading and release profile. Eur. Polym. J. 2019, 113, 244–253. DOI: 10.1016/j.eurpolymj.2019.02.003.
  • Blagoeva, R.; Nedev, A. Monolithic controlled delivery systems: part II. Basic mathematical models. Bioautomation 2006, 5, 106–117.
  • Siepmann, J.; Peppas, N. A. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv. Drug Deliv. Rev. 2001, 48, 139–157. DOI: 10.1016/S0169-409X(01)00112-0.
  • Kumari, V.; Tyagi, P.; Sangal, A. In-vitro kinetic release study of illicium verum (chakraphool) polymeric nanoparticles. Mater. Today: Proc. 2022, 60, 14–20. DOI: 10.1016/j.matpr.2021.11.014.
  • Ilgin, P.; Zorer, O. S.; Ozay, O.; Boran, G. Synthesis and characterization of 2-hydroxyethylmethacrylate/2-(3-indol-yl)ethylmethacrylamide-based novel hydrogels as drug carrier with in vitro antibacterial properties. J. Appl. Polym. Sci. 2017, 134, 45550. DOI: 10.1002/app.45550.
  • Eltaweil, A. S.; Ahmed, M. S.; El-Subruiti, G. M.; Khalifa, R. E.; Omer, A. M. Efficient loading and delivery of ciprofloxacin by smart alginate/carboxylated graphene oxide/aminated chitosan composite microbeads: in vitro release and kinetic studies. Arab. J. Chem. 2023, 16, 104533. DOI: 10.1016/j.arabjc.2022.104533.
  • Balouiri, M.; Sadiki, M.; Ibnsouda, S. K. Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 2016, 6, 71–79. DOI: 10.1016/j.jpha.2015.11.005.
  • Imtiaz, N.; Niazi, M. B. K.; Fasim, F.; Khan, B. A.; Bano, S. A.; Shah, G. M.; Badshah, M.; Menaa, F.; Uzair, B. Fabrication of an original transparent PVA/gelatin hydrogel: in vitro antimicrobial activity against skin pathogens. Int. J. Polym. Sci. 2019, 2019, 1–11. DOI: 10.1155/2019/7651810.
  • Gupta, A.; Lee, J.; Ghosh, T.; Nguyen, V. Q.; Dey, A.; Yoon, B.; Um, W.; Park, J. H. Polymeric hydrogels for controlled drug delivery to treat arthritis. Pharm. 2022, 14, 540. DOI: 10.3390/pharmaceutics14030540.
  • Nutan, B.; Chandel, A. K. S.; Biswas, A.; Kumar, A.; Yadav, A.; Maiti, P.; Jewrajka, S. K. Gold nanoparticle promoted formation and biological properties of injectable hydrogels. Biomacromolecules 2020, 21, 3782–3794. DOI: 10.1021/acs.biomac.0c00889.
  • He, R.; Zhou, D.; Xiao, L.; Li, Y. Chlorella vulgaris extract-decorated gold nanoparticle hybridized antimicrobial hydrogel as a potential dressing. Gels 2022, 9, 1–11. DOI: 10.3390/gels9010011.
  • Franca, T.; Goncalves, D.; Cena, C. ATR-FTIR spectroscopy combined with machine learning for classification of PVA/PVP blends in low concentration. Vib. Spectrosc. 2022, 120, 103378. DOI: 10.1016/j.vibspec.2022.103378.
  • Hsueh, Y. H.; Liaw, W. C.; Kuo, J. M.; Deng, C. S.; Wu, C. H. Hydrogel film-immobilized lactobacillus brevis RK03 for γ-aminobutyric acid production. Int. J. Mol. Sci. 2017, 18, 2324. DOI: 10.3390/ijms18112324.
  • Wu, J. Y.; Huang, C. W.; Tsai, P. S. A novel and facile antibacterial sponge for effective demulsification and oil/water emulsions separation. DWT 2020, 178, 387–395. DOI: 10.5004/dwt.2020.24971.
  • Ganji, F.; Vasheghani-Farahani, S.; Vasheghani-Farahani, E. Theoretical description of hydrogel swelling: a review. Iran. Polym. J. 2010, 19, 375–398.
  • Jayaramudu, T.; Ko, H. U.; Kim, H. C.; Kim, J. W.; Kim, J. Swelling behavior of polyacrylamide-cellulose nanocrystal hydrogels: swelling kinetics, temperature, and pH effects. Materials (Basel) 2019, 12, 2080. DOI: 10.3390/ma12132080.
  • Minhas, M. U.; Ahmad, M.; Ali, L.; Sohail, M. Synthesis of chemically cross-linked polyvinyl alcohol-co-poly (methacrylic acid) hydrogels by copolymerization; a potential graft-polymeric carrier for oral delivery of 5-fluorouracil. DARU J. Pharmaceu. Sci. 2013, 21, 44. DOI: 10.1186/2008-2231-21-44.
  • Ozsoy, F.; Ozay, O. Phosphazene-based nanostructures modified with gold nanoparticles as drug and gene carrier materials with antibacterial and antifungal properties. Int. J. Polym. Mater. Polym. Biomater. 2023, 1–12. DOI: 10.1080/00914037.2022.2163642. Published Online.
  • England, C. G.; Miller, M. C.; Kuttan, A.; Trent, J. O.; Frieboes, H. B. Release kinetics of paclitaxel and cisplatin from two and three layered gold nanoparticles. Eur. J. Pharm. Biopharm. 2015, 92, 120–129. DOI: 10.1016/j.ejpb.2015.02.017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.