163
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Shape memory nanocomposites of polyester/fullerene, polyester/graphene and polyester/carbon nanotube—state-of-the-art and progresses

ORCID Icon &
Pages 213-230 | Received 19 Dec 2023, Accepted 03 Mar 2024, Published online: 12 Mar 2024

Reference

  • Gayathri, V.; Jaisankar, S. N.; Samanta, D. Temperature and pH Responsive Polymers: Sensing Applications. Journal of Macromolecular Science, Part A 2022, 59, 98–126. DOI: 10.1080/10601325.2021.1988636.
  • Rahman, M. L.; Xin Ting, T.; Sarjadi, M. S.; Arshad, S. E.; Soloi, S.; Jamain, Z.; Abd Majid, M. H.; Hedge, G. Synthesis of Bent-Shaped Azobenzene Main-Chain Polymers for Photo-Switching Properties. Journal of Macromolecular Science, Part A 2023, 61, 40–52. DOI: 10.1080/10601325.2023.2287033.
  • Kausar, A. Shape Memory Polystyrene-Based Nanocomposite: Present Status and Future Opportunities. Journal of Macromolecular Science, Part A 2021, 58, 182–191. DOI: 10.1080/10601325.2020.1840919.
  • Kausar, A. Shape Memory Poly (Methyl Methacrylate) Nanocomposites: Design and Methodical Trends. Polym. Plast. Technol. Mater. 2021, 60, 1759–1774. DOI: 10.1080/25740881.2021.1930046.
  • Boudjellal, A.; Trache, D.; Khimeche, K.; Hafsaoui, S. L.; Bougamra, A.; Tcharkhtchi, A.; Durastanti, J.-F. Stimulation and Reinforcement of Shape-Memory Polymers and Their Composites: A Review. J. Thermoplast. Compos. Mater. 2022, 35, 2227–2260. DOI: 10.1177/0892705720930775.
  • Melly, S. K.; Liu, L.; Liu, Y.; Leng, J. Active Composites Based on Shape Memory Polymers: Overview, Fabrication Methods, Applications, and Future Prospects. J. Mater. Sci. 2020, 55, 10975–11051. DOI: 10.1007/s10853-020-04761-w.
  • Jaffe, M.; Easts, A. J.; Feng, X. Polyester Fibers, in Thermal Analysis of Textiles and Fibers; Elsevier: Netherlands, 2020; pp. 133–149.
  • Rizzarelli, P.; Rapisarda, M.; Valenti, G. Mass Spectrometry in Bioresorbable Polymer Development, Degradation and Drug‐Release Tracking. Rapid Commun. Mass Spectrom. 2020, 34 Suppl 2, e8697. DOI: 10.1002/rcm.8697.
  • Yue, C.; Li, M.; Liu, Y.; Fang, Y.; Song, Y.; Xu, M.; Li, J. Three-Dimensional Printing of Cellulose Nanofibers Reinforced PHB/PCL/Fe3O4 Magneto-Responsive Shape Memory Polymer Composites with Excellent Mechanical Properties. Addit. Manuf. 2021, 46, 102146. DOI: 10.1016/j.addma.2021.102146.
  • Meng, Z.-Y.; Chen, L.; Zhong, H.-Y.; Yang, R.; Liu, X.-F.; Wang, Y.-Z. Effect of Different Dimensional Carbon Nanoparticles on the Shape Memory Behavior of Thermotropic Liquid Crystalline Polymer. Compos. Sci. Technol. 2017, 138, 8–14. DOI: 10.1016/j.compscitech.2016.11.006.
  • Park, J.; Park, S. Y.; Lee, D.; Song, Y. S. Shape Memory Polymer Composites Embedded with Hybrid Ceramic Microparticles. Smart Mater. Struct. 2020, 29, 055037. DOI: 10.1088/1361-665X/ab5e53.
  • Kumar, V.; Tang, X. New Horizons in Nanofiller-Based Polymer Composites II. Polymers 2023, 15, 4259. MDPIDOI: 10.3390/polym15214259.
  • Graafsma, I. L.; Robidoux, S.; Nickels, L.; Roberts, M.; Polito, V.; Zhu, J. D.; Marinus, E. The Cognition of Programming: Logical Reasoning, Algebra and Vocabulary Skills Predict Programming Performance following an Introductory Computing Course. Journal of Cognitive Psychology 2023, 35, 364–381. DOI: 10.1080/20445911.2023.2166054.
  • Mumtaz, M.; et al. Introduction to Biopolymers, Their Blend, IPN s, Gel, Composites, and Nanocomposites. Applications of Biopolymers in Science, Biotechnology, and Engineering, 2024: P. 1–29.
  • Mahjoubnia, A.; Cai, D.; Wu, Y.; King, S. D.; Torkian, P.; Chen, A. C.; Talaie, R.; Chen, S.-Y.; Lin, J. Digital Light 4D Printing of Bioresorbable Shape Memory Elastomers for Personalized Biomedical Implantation. Acta Biomater. 2024, DOI: 10.1016/j.actbio.2024.02.009.
  • Rahmatabadi, D.; Aberoumand, M.; Soltanmohammadi, K.; Soleyman, E.; Ghasemi, I.; Baniassadi, M.; Abrinia, K.; Bodaghi, M.; Baghani, M. Toughening PVC with Biocompatible PCL Softeners for Supreme Mechanical Properties, Morphology, Shape Memory Effects, and FFF Printability. Macro. Materials & Eng. 2023, 308, 2300114. DOI: 10.1002/mame.202300114.
  • Rahmatabadi, D.; Ghasemi, I.; Baniassadi, M.; Abrinia, K.; Baghani, M. 4D Printing of PLA-TPU Blends: Effect of PLA Concentration, Loading Mode, and Programming Temperature on the Shape Memory Effect. J. Mater. Sci. 2023, 58, 7227–7243. DOI: 10.1007/s10853-023-08460-0.
  • Rahmatabadi, D.; Soltanmohammadi, K.; Pahlavani, M.; Aberoumand, M.; Soleyman, E.; Ghasemi, I.; Baniassadi, M.; Abrinia, K.; Bodaghi, M.; Baghani, M.; et al. Shape Memory Performance Assessment of FDM 3D Printed PLA-TPU Composites by Box-Behnken Response Surface Methodology. Int. J. Adv. Manuf. Technol. 2023, 127, 935–950. DOI: 10.1007/s00170-023-11571-2.
  • Wang, B.; Wu, W.; Liu, H.; Wang, L.; Qi, M.; Wei, Z.; Zhang, H.; Sang, L. 3D-Printing of Biomass Furan-Based Polyesters with Robust Mechanical Performance and Shape Memory Property. Int. J. Biol. Macromol. 2024, 254, 127701. DOI: 10.1016/j.ijbiomac.2023.127701.
  • Rusli, N. M.; et al. Preparation and Characterization of Biodegradable Polyester-Based Shape-Memory Polymer. Presented at the Proceedings of the International Symposium on Lightweight and Sustainable Polymeric Materials LSPM23, Springer Nature. 2023.
  • Mukherjee, C.; Varghese, D.; Krishna, J. S.; Boominathan, T.; Rakeshkumar, R.; Dineshkumar, S.; Brahmananda Rao, C. V. S.; Sivaramakrishna, A. Recent Advances in Biodegradable Polymers–Properties, Applications and Future Prospects. Eur. Polym. J. 2023, 192, 112068. DOI: 10.1016/j.eurpolymj.2023.112068.
  • Kausar, A. Shape Memory Polymer/Graphene Nanocomposites: State-of-the-Art. e-Polymers 2022, 22, 165–181. DOI: 10.1515/epoly-2022-0024.
  • Dayyoub, T.; Maksimkin, A. V.; Filippova, O. V.; Tcherdyntsev, V. V.; Telyshev, D. V. Shape Memory Polymers as Smart Materials: A Review. Polymers. (Basel) 2022, 14, 3511. p DOI: 10.3390/polym14173511.
  • Hao, S.; Li, T.; Yang, X.; Song, H. Ultrastretchable, Adhesive, Fast Self-Healable, and Three-Dimensional Printable Photoluminescent Ionic Skin Based on Hybrid Network Ionogels. ACS Appl. Mater. Interfaces. 2021, 14, 2029–2037. DOI: 10.1021/acsami.1c21325.
  • Wang, L.; Zhang, F.; Liu, Y.; Leng, J. Shape Memory Polymer Fibers: Materials, Structures, and Applications. Adv. Fiber Mater. 2022, 4, 5–23. DOI: 10.1007/s42765-021-00073-z.
  • Shahid, S.; Razzaq, S.; Farooq, R.; Nazli, Z.-I.-H. Polyhydroxyalkanoates: Next Generation Natural Biomolecules and a Solution for the World’s Future Economy. Int. J. Biol. Macromol. 2021, 166, 297–321. DOI: 10.1016/j.ijbiomac.2020.10.187.
  • Velu, R.; Calais, T.; Jayakumar, A.; Raspall, F. A Comprehensive Review on Bio-Nanomaterials for Medical Implants and Feasibility Studies on Fabrication of Such Implants by Additive Manufacturing Technique. Materials 2019, 13, 92. DOI: 10.3390/ma13010092.
  • Gupta, B.; Revagade, N.; Hilborn, J. Poly (Lactic Acid) Fiber: An Overview. Prog. Polym. Sci. 2007, 32, 455–482. DOI: 10.1016/j.progpolymsci.2007.01.005.
  • Luan, H.; Zhang, X.; Ding, H.; Zhang, F.; Luan, J. H.; Jiao, Z. B.; Yang, Y.-C.; Bu, H.; Wang, R.; Gu, J.; et al. High-Entropy Induced a Glass-to-Glass Transition in a Metallic Glass. Nat. Commun. 2022, 13, 2183. DOI: 10.1038/s41467-022-29789-1.
  • Hashimoto, K.; Kurokawa, N.; Hotta, A. Controlling the Switching Temperature of Biodegradable Shape Memory Polymers Composed of Stereocomplex Polylactide/Poly (d, l-Lactide-co-ε-Caprolactone) Blends. Polymer 2021, 233, 124190. DOI: 10.1016/j.polymer.2021.124190.
  • Tao, J.-R.; Luo, C.-L.; Huang, M.-L.; Weng, Y.-X.; Wang, M. Construction of Unique Conductive Networks in Carbon Nanotubes/Polymer Composites via Poly (ε-Caprolactone) Inducing Partial Aggregation of Carbon Nanotubes for Microwave Shielding Enhancement. Composites Part A: Applied Science and Manufacturing 2023, 164, 107304. DOI: 10.1016/j.compositesa.2022.107304.
  • Zhang, W.; Chen, S.; Chen, S.; Wang, G.; Han, S.; Guo, J.; Yang, L.; Hu, J. Physical Cross-Linked Aliphatic Polycarbonate with Shape-Memory and Self-Healing Properties. J. Mol. Liq. 2023, 381, 121798. DOI: 10.1016/j.molliq.2023.121798.
  • Moslan, M. S.; Othman, M. H. D.; Samavati, A.; Theodosiou, A.; Kalli, K.; Ismail, A. F.; Rahman, M. A. Real-Time Fluid Flow Movement Identification in Porous Media for Reservoir Monitoring Application Using Polycarbonate Optical Fibre Bragg Grating Sensor. Sens. Actuators, A 2023, 354, 114246. DOI: 10.1016/j.sna.2023.114246.
  • Rochette, J. M.; Ashby, V. S. Photoresponsive Polyesters for Tailorable Shape Memory Biomaterials. Macromolecules 2013, 46, 2134–2140. DOI: 10.1021/ma302354a.
  • Tsujimoto, T.; Uyama, H. Full Biobased Polymeric Material from Plant Oil and Poly (Lactic Acid) with a Shape Memory Property. ACS Sustainable Chem. Eng. 2014, 2, 2057–2062. DOI: 10.1021/sc500310s.
  • Zhu, Y.; Radlauer, M. R.; Schneiderman, D. K.; Shaffer, M. S. P.; Hillmyer, M. A.; Williams, C. K. Multiblock Polyesters Demonstrating High Elasticity and Shape Memory Effects. Macromolecules 2018, 51, 2466–2475. DOI: 10.1021/acs.macromol.7b02690.
  • Sessini, V.; Navarro-Baena, I.; Arrieta, M. P.; Dominici, F.; López, D.; Torre, L.; Kenny, J. M.; Dubois, P.; Raquez, J.-M.; Peponi, L.; et al. Effect of the Addition of Polyester-Grafted-Cellulose Nanocrystals on the Shape Memory Properties of Biodegradable PLA/PCL Nanocomposites. Polym. Degrad. Stab. 2018, 152, 126–138. DOI: 10.1016/j.polymdegradstab.2018.04.012.
  • Ganguly, S. Preparation/Processing of Polymer-Graphene Composites by Different Techniques. In Polymer Nanocomposites Containing Graphene; Elsevier: Netherlands, 2022; pp. 45–74.
  • Hu, K.; Kulkarni, D. D.; Choi, I.; Tsukruk, V. V. Graphene-Polymer Nanocomposites for Structural and Functional Applications. Prog. Polym. Sci. 2014, 39, 1934–1972. DOI: 10.1016/j.progpolymsci.2014.03.001.
  • Jaouen, K.; et al. 2020 Backside Absorbing Layer Microscopy: a New Tool to Study the Optical, Chemical and Electrochemical Properties of 2D Materials. in 237th ECS meeting.
  • Hu, T.; Ye, H.; Luo, Z.; Ma, J.; Zhang, B.; Zhang, X.; Song, J.; Wang, Q.; Xu, L. Efficient Exfoliation of UV-Curable, High-Quality Graphene from Graphite in Common Low-Boiling-Point Organic Solvents with a Designer Hyperbranched Polyethylene Copolymer and Their Applications in Electrothermal Heaters. J. Colloid Interface Sci. 2020, 569, 114–127. DOI: 10.1016/j.jcis.2020.02.068.
  • Chen, W.; Weimin, H.; Li, D.; Chen, S.; Dai, Z. A Critical Review on the Development and Performance of Polymer/Graphene Nanocomposites. Sci. Engin. Composite Mater. 2018, 25, 1059–1073. DOI: 10.1515/secm-2017-0199.
  • Owji, E.; Ostovari, F.; Keshavarz, A. Influence of the Chemical Structure of Diisocyanate on the Electrical and Thermal Properties of in Situ Polymerized Polyurethane–Graphene Composite Films. Phys. Chem. Chem. Phys. 2022, 24, 28564–28576. DOI: 10.1039/d2cp03826a.
  • Itapu, B. M.; Jayatissa, A. H. A Review in Graphene/Polymer Composites. CSIJ. 2018, 23, 1–16. DOI: 10.9734/CSJI/2018/41031.
  • Hu, H.; Wang, X.; Wang, J.; Wan, L.; Liu, F.; Zheng, H.; Chen, R.; Xu, C. Preparation and Properties of Graphene Nanosheets–Polystyrene Nanocomposites via in Situ Emulsion Polymerization. Chem. Phys. Lett. 2010, 484, 247–253. DOI: 10.1016/j.cplett.2009.11.024.
  • Patole, A. S.; Patole, S. P.; Kang, H.; Yoo, J.-B.; Kim, T.-H.; Ahn, J.-H. A Facile Approach to the Fabrication of Graphene/Polystyrene Nanocomposite by in Situ Microemulsion Polymerization. J. Colloid Interface Sci. 2010, 350, 530–537. DOI: 10.1016/j.jcis.2010.01.035.
  • Sadeghi, A.; Moeini, R.; Yeganeh, J. K. Highly Conductive PP/PET Polymer Blends with High Electromagnetic Interference Shielding Performances in the Presence of Thermally Reduced Graphene Nanosheets Prepared through Melt Compounding. Polym. Compos. 2019, 40, E1461–E1469. DOI: 10.1002/pc.25051.
  • Gill, Y. Q.; Ehsan, H.; Mehmood, U.; Irfan, M. S.; Saeed, F. A Novel Two-Step Melt Blending Method to Prepare Nano-Silanized-Silica Reinforced Crosslinked Polyethylene (XLPE) Nanocomposites. Polym. Bull. 2022, 79, 10077–10093. DOI: 10.1007/s00289-021-03989-z.
  • Tan, B.; Thomas, N. L. A Review of the Water Barrier Properties of Polymer/Clay and Polymer/Graphene Nanocomposites. J. Membr. Sci. 2016, 514, 595–612. DOI: 10.1016/j.memsci.2016.05.026.
  • Shinde, S.; Mane, R.; Vardikar, A.; Dhumal, A.; Rajput, A. 4D Printing: From Emergence to Innovation over 3D Printing. Eur. Polym. J. 2023, 197, 112356. DOI: 10.1016/j.eurpolymj.2023.112356.
  • Imrie, P.; Jin, J. Polymer 4D Printing: Advanced Shape‐Change and beyond. Journal of Polymer Science 2022, 60, 149–174. DOI: 10.1002/pol.20210718.
  • Wu, Y.; Zhang, Y.; Yan, M.; Hu, G.; Li, Z.; He, W.; Wang, X.; Abulimit, A.; Li, R. Research Progress on the Application of Inkjet Printing Technology Combined with Hydrogels. Appl. Mater. Today 2024, 36, 102036. DOI: 10.1016/j.apmt.2023.102036.
  • Vinay, D. L.; Keshavamurthy, R.; Erannagari, S.; Gajakosh, A.; Dwivedi, Y. D.; Bandhu, D.; Tamam, N.; Saxena, K. K. Parametric Analysis of Processing Variables for Enhanced Adhesion in Metal-Polymer Composites Fabricated by Fused Deposition Modeling. J. Adhes. Sci. Technol. 2024, 38, 331–354. DOI: 10.1080/01694243.2023.2228496.
  • Kawre, S.; Suryavanshi, P.; Lalchandani, D. S.; Deka, M. K.; Kumar Porwal, P.; Kaity, S.; Roy, S.; Banerjee, S. Bioinspired Labrum-Shaped Stereolithography (SLA) Assisted 3D Printed Hollow Microneedles (HMNs) for Effectual Delivery of Ceftriaxone Sodium. Eur. Polym. J. 2024, 204, 112702. DOI: 10.1016/j.eurpolymj.2023.112702.
  • Song, Y.; Ghafari, Y.; Asefnejad, A.; Toghraie, D. An Overview of Selective Laser Sintering 3D Printing Technology for Biomedical and Sports Device Applications: Processes, Materials, and Applications. Optics & Laser Technology 2024, 171, 110459. DOI: 10.1016/j.optlastec.2023.110459.
  • Elder, B.; Neupane, R.; Tokita, E.; Ghosh, U.; Hales, S.; Kong, Y. L. Nanomaterial Patterning in 3D Printing. Adv. Mater. 2020, 32, 1907142. DOI: 10.1002/adma.201907142.
  • Singh, S.; Ramakrishna, S.; Berto, F. 3D Printing of Polymer Composites: A Short Review. Mat. Design & Process. Comms. 2020, 2, e97. DOI: 10.1002/mdp2.97.
  • Aberoumand, M.; Soltanmohammadi, K.; Rahmatabadi, D.; Soleyman, E.; Ghasemi, I.; Baniassadi, M.; Abrinia, K.; Bodaghi, M.; Baghani, M. 4D Printing of Polyvinyl Chloride (PVC): A Detailed Analysis of Microstructure, Programming, and Shape Memory Performance. Macro. Materials & Eng. 2023, 308, 2200677. DOI: 10.1002/mame.202200677.
  • Soleyman, E.; Aberoumand, M.; Rahmatabadi, D.; Soltanmohammadi, K.; Ghasemi, I.; Baniassadi, M.; Abrinia, K.; Baghani, M. Assessment of Controllable Shape Transformation, Potential Applications, and Tensile Shape Memory Properties of 3D Printed PETG. J. Mater. Res. Technol. 2022, 18, 4201–4215. DOI: 10.1016/j.jmrt.2022.04.076.
  • Chowdary, M. S.; et al. Characterizations of Polymer–Carbonaceous Composites, in Polymer-Carbonaceous Filler Based Composites for Wastewater Treatment. 2023, CRC Press. p. 69–92.
  • Kausar, A. Advances in Condensation Polymer Containing Zero-Dimensional Nanocarbon Reinforcement—Fullerene, Carbon Nano-Onion, and Nanodiamond. Polymer-Plastics Technology and Materials 2021, 60, 695–713. DOI: 10.1080/25740881.2020.1826522.
  • Mio, T.; Ikemoto, K.; Sato, S.; Isobe, H. Synthesis of a Hemispherical Geodesic Phenine Framework by a Polygon Assembling Strategy. Angewandte Chemie 2020, 132, 6629–6633. DOI: 10.1002/ange.201915509.
  • Kuruba, P.; Dushyantha, N. Stability Control in Polygon Based Topology Formation and Information Gathering in Satellite Based Wireless Sensor Network. Wireless Pers. Commun. 2021, 120, 2491–2518. DOI: 10.1007/s11277-021-08471-7.
  • Kausar, A. Epitome of Fullerene in Conducting Polymeric Nanocomposite—Fundamentals and Beyond. Pol. Plast. Technol. Mater. 2023, 62, 618–631. DOI: 10.1080/25740881.2022.2121223.
  • Kausar, A. Review of Fundamentals and Applications of Polyester Nanocomposites Filled with Carbonaceous Nanofillers. J. Plast. Film Sheet. 2019, 35, 22–44. DOI: 10.1177/8756087918783827.
  • Das, A.; Mahanwar, P. A Brief Discussion on Advances in Polyurethane Applications. Adv. Ind. Eng. Polym. Res. 2020, 3, 93–101. DOI: 10.1016/j.aiepr.2020.07.002.
  • Demirel, M. H.; Aydoğmuş, E. Waste Polyurethane Reinforced Polyester Composite, Production, and Characterization. Journal of the Turkish Chemical Society Section A: Chemistry 2022, 9, 443–452. DOI: 10.18596/jotcsa.937332.
  • Rajput, B. S.; Hai, T. A. P.; Burkart, M. D. High Bio-Content Thermoplastic Polyurethanes from Azelaic Acid. Molecules 2022, 27, 4885. DOI: 10.3390/molecules27154885.
  • Zhou, Z.; Meng, Y.; Wei, C.; Bai, Y.; Wang, X.; Quan, D.; Zhou, J. Linear Shape Memory Polyester with Programmable Splitting of Crystals. Macro. Materials & Eng. 2021, 306, 2100254. DOI: 10.1002/mame.202100254.
  • Subasi, A.; Subasi, S.; Bayram, M.; Sarı, A.; Hekimoğlu, G.; Ustaoglu, A.; Gencel, O.; Ozbakkaloglu, T. Effect of Carbon Nanotube and Microencapsulated Phase Change Material Utilization on the Thermal Energy Storage Performance in UV Cured (Photoinitiated) Unsaturated Polyester Composites. J. Storage. Mater. 2023, 61, 106780. DOI: 10.1016/j.est.2023.106780.
  • Wang, L.; Chen, Q.; Zhou, Y.; Zheng, R.; Zhou, X.; Fan, J. Experimental Design and Testing of the Electrothermal Properties of Carbon Nanotube Film. Text. Res. J. 2023, 93, 507–518. DOI: 10.1177/00405175221118829.
  • Thummarungsan, N.; Pattavarakorn, D.; Sirivat, A. Electrically Responsive Materials Based on Dibutyl Phathalate Plasticized Poly (Lactic Acid) and Spherical Fullerene. Smart Mater. Struct. 2022, 31, 035029. DOI: 10.1088/1361-665X/ac5013.
  • Li, Z.; Zhang, F-l.; Pan, L-l.; Zhu, X-l.; Zhang, Z-z Preparation and Characterization of Injectable Mitoxantrone Poly (Lactic Acid)/Fullerene Implants for in Vivo Chemo-Photodynamic Therapy. J. Photochem. Photobiol. B 2015, 149, 51–57. DOI: 10.1016/j.jphotobiol.2015.05.018.
  • Tayfun, U.; Kanbur, Y.; Abaci, U.; Guney, H. Y.; Bayramli, E. Mechanical, Flow and Electrical Properties of Thermoplastic Polyurethane/Fullerene Composites: Effect of Surface Modification of Fullerene. Composites Part B: Engineering 2015, 80, 101–107. DOI: 10.1016/j.compositesb.2015.05.013.
  • Kausar, A. Poly (Methyl Methacrylate)/Fullerene Nanocomposite—Factors and Applications. Polym. Plast. Technol. Mater. 2022, 61, 593–608. DOI: 10.1080/25740881.2021.1995422.
  • Branson, Y.; Söltl, S.; Buchmann, C.; Wei, R.; Schaffert, L.; Badenhorst, C. P. S.; Reisky, L.; Jäger, G.; Bornscheuer, U. T. Urethanases for the Enzymatic Hydrolysis of Low Molecular Weight Carbamates and the Recycling of Polyurethanes. Angew. Chem. Int. Ed. Engl. 2023, 62, e202216220. DOI: 10.1002/anie.202216220.
  • Picheau, E.; Hof, F.; Amar, S.; Derré, A.; Pénicaud, A. Burning Graphite Faster than Carbon Black: A Case of Diffusion Control. Angew. Chem. Int. Ed. Engl. 2023, 62, e202303060. DOI: 10.1002/ange.202303060.
  • Milenov, T. I.; Dimov, D. A.; Avramova, I. A.; Kolev, S. K.; Trifonov, D. V.; Avdeev, G. V.; Karashanova, D. B.; Georgieva, B. C.; Ivanov, K. V.; Valcheva, E. P.; et al. Modification of Micro-Crystalline Graphite and Carbon Black by Acetone, Toluene, and Phenol. J. Chem. Phys. 2023, 158, 064706. DOI: 10.1063/5.0133736.
  • Urade, A. R.; Lahiri, I.; Suresh, K. Graphene Properties, Synthesis and Applications: A Review. Jom (1989) 2023, 75, 614–630. DOI: 10.1007/s11837-022-05505-8.
  • Dresselhaus, M. S.; Endo, M. Relation of Carbon Nanotubes to Other Carbon Materials. In Carbon Nanotubes; Springer: Cham, Switzerland, 2001; pp. 11–28.
  • Balaji, K.; Shirvanimoghaddam, K.; Naebe, M. Multifunctional Basalt Fiber Polymer Composites Enabled by Carbon Nanotubes and Graphene. Compos. Part B Engi. 2024, 268, 111070. DOI: 10.1016/j.compositesb.2023.111070.
  • Fu, X.; Lin, J.; Liang, Z.; Yao, R.; Wu, W.; Fang, Z.; Zou, W.; Wu, Z.; Ning, H.; Peng, J.; et al. Graphene Oxide as a Promising Nanofiller for Polymer Composite. Surf. Interfaces 2023, 37, 102747. DOI: 10.1016/j.surfin.2023.102747.
  • Polo-Mendoza, R.; Navarro-Donado, T.; Ortega-Martinez, D.; Turbay, E.; Martinez-Arguelles, G.; Peñabaena-Niebles, R. Properties and Characterization Techniques of Graphene Modified Asphalt Binders. Nanomaterials 2023, 13, 955. DOI: 10.3390/nano13050955.
  • Yu, W.; Sisi, L.; Haiyan, Y.; Jie, L. Progress in the Functional Modification of Graphene/Graphene Oxide: A Review. RSC Adv. 2020, 10, 15328–15345. DOI: 10.1039/d0ra01068e.
  • Razavi, S. R.; Shakeri, A.; Mahdavi, H. Polymer-Grafted Graphene Oxide as a High-Performance Nanofiller for Modification of Forward Osmosis Membrane Substrates. ACS Appl. Polym. Mater. 2022, 4, 8878–8891. DOI: 10.1021/acsapm.2c01266.
  • Rasuli, H.; Rasuli, R. Nanoparticle-Decorated Graphene/Graphene Oxide: Synthesis, Properties and Applications. J. Mater. Sci. 2023, 58, 2971–2992. DOI: 10.1007/s10853-023-08183-2.
  • Edokali, M.; Bocking, R.; Mehrabi, M.; Massey, A.; Harbottle, D.; Menzel, R.; Hassanpour, A. Chemical Modification of Reduced Graphene Oxide Membranes: Enhanced Desalination Performance and Structural Properties for Forward Osmosis. Chem. Eng. Res. Des. 2023, 199, 659–675. DOI: 10.1016/j.cherd.2023.10.022.
  • Krishnakumar, B.; Bose, D.; Singh, M.; Sanka, R. V. S. P.; Gurunadh, V. V. S. S.; Singhal, S.; Parthasarthy, V.; Guadagno, L.; Vijayan P, P.; Thomas, S.; et al. Sugarcane Bagasse-Derived Activated Carbon-(AC-) Epoxy Vitrimer Biocomposite: Thermomechanical and Self-Healing Performance. Inter. J. Polym. Sci. 2021, 2021, 1–7. DOI: 10.1155/2021/5561755.
  • Khan, T.; Aslam, M.; Basit, M.; Raza, Z. A. Graphene-Embedded Electrospun Polyacrylonitrile Nanofibers with Enhanced Thermo-Mechanical Properties. J. Nanopart. Res. 2023, 25, 78. DOI: 10.1007/s11051-023-05728-z.
  • Natrayan, L.; Kumar, P. V. A.; Kaliappan, S.; Sekar, S.; Patil, P. P.; Velmurugan, G.; Gurmesa, M. D. Optimisation of Graphene Nanofiller Addition on the Mechanical and Adsorption Properties of Woven Banana/Polyester Hybrid Nanocomposites by Grey-Taguchi Method. Adsorp. Sci. Technol. 2022, 2022, 1–10. DOI: 10.1155/2022/1856828.
  • Trivedi, D. N.; Rachchh, N. V. Graphene and Its Application in Thermoplastic Polymers as Nano-filler-A Review. Polymer 2022, 240, 124486. DOI: 10.1016/j.polymer.2021.124486.
  • Babaie, A.; Rezaei, M.; Sofla, R. L. M. Investigation of the Effects of Polycaprolactone Molecular Weight and Graphene Content on Crystallinity, Mechanical Properties and Shape Memory Behavior of Polyurethane/Graphene Nanocomposites. J. Mech. Behav. Biomed. Mater. 2019, 96, 53–68. DOI: 10.1016/j.jmbbm.2019.04.034.
  • Zhang, Z-x.; Dou, J-x.; He, J-h.; Xiao, C-x.; Shen, L-y.; Yang, J-h.; Wang, Y.; Zhou, Z-w Electrically/Infrared Actuated Shape Memory Composites Based on a Bio-Based Polyester Blend and Graphene Nanoplatelets and Their Excellent Self-Driven Ability. J. Mater. Chem. C 2017, 5, 4145–4158. DOI: 10.1039/C7TC00828G.
  • Molavi, F. K.; et al. Nanocomposites Based on Poly (L-Lactide)/Poly (ε-Caprolactone) Blends with Triple-Shape Memory Behavior: Effect of the Incorporation of Graphene Nanoplatelets (GNps). Compos. Sci. Technol. 2017, 151, 219–227.
  • Panahi-Sarmad, M.; Goodarzi, V.; Amirkiai, A.; Noroozi, M.; Abrisham, M.; Dehghan, P.; Shakeri, Y.; Karimpour-Motlagh, N.; Poudineh Hajipoor, F.; Ali Khonakdar, H.; et al. Programing Polyurethane with Systematic Presence of Graphene-Oxide (GO) and Reduced Graphene-Oxide (rGO) Platelets for Adjusting of Heat-Actuated Shape Memory Properties. Eur. Polym. J. 2019, 118, 619–632. DOI: 10.1016/j.eurpolymj.2019.06.034.
  • Tang, Z.; Kang, H.; Wei, Q.; Guo, B.; Zhang, L.; Jia, D. Incorporation of Graphene into Polyester/Carbon Nanofibers Composites for Better Multi-Stimuli Responsive Shape Memory Performances. Carbon 2013, 64, 487–498. DOI: 10.1016/j.carbon.2013.07.103.
  • Qin, L. C.; Zhao, X.; Hirahara, K.; Miyamoto, Y.; Ando, Y.; Iijima, S. The Smallest Carbon Nanotube. Nature 2000, 408, 50–50. DOI: 10.1038/35040699.
  • Kang, B.-H.; Hur, O.-N.; Hong, S.-K.; Park, S.-H. Electrical and Mechanical Properties of Polymer Composite through the Use of Single-Walled Carbon Nanotube and Multi-Walled Carbon Nanotube. Korean J. Met. Mater. 2022, 60, 694–700. DOI: 10.3365/KJMM.2022.60.9.694.
  • Taherian, R.; Kausar, A. Electrical Conductivity in Polymer-Based Composites: Experiments, Modelling, and Applications; William Andrew: Netherlands, 2018.
  • Venkataraman, A.; Amadi, E. V.; Chen, Y.; Papadopoulos, C. Carbon Nanotube Assembly and Integration for Applications. Nanoscale Res. Lett. 2019, 14, 220. DOI: 10.1186/s11671-019-3046-3.
  • Lu, D.; Huo, Y.; Jiang, Z.; Zhong, J. Carbon Nanotube Polymer Nanocomposites Coated Aggregate Enabled Highly Conductive Concrete for Structural Health Monitoring. Carbon 2023, 206, 340–350. DOI: 10.1016/j.carbon.2023.02.043.
  • Zhang, X.; Zhao, N.; He, C. The Superior Mechanical and Physical Properties of Nanocarbon Reinforced Bulk Composites Achieved by Architecture Design–a Review. Prog. Mater. Sci. 2020, 113, 100672. DOI: 10.1016/j.pmatsci.2020.100672.
  • Ogawa, F.; Masuda, C. Fabrication and the Mechanical and Physical Properties of Nanocarbon-Reinforced Light Metal Matrix Composites: A Review and Future Directions. Materials Science and Engineering: A 2021, 820, 141542. DOI: 10.1016/j.msea.2021.141542.
  • Uyan, M.; Celiktas, M. S. Evaluation of the Bio-Based Materials Utilization in Shape Memory Polymer Composites Production. Eur. Polym. J. 2023, 195, 112196. DOI: 10.1016/j.eurpolymj.2023.112196.
  • Sun, J.; Peng, B.; Lu, Y.; Zhang, X.; Wei, J.; Zhu, C.; Yu, Y. A Photoorganizable Triple Shape Memory Polymer for Deployable Devices. Small 2022, 18, e2106443. DOI: 10.1002/smll.202106443.
  • Shuai, C.; Wang, Z.; Peng, S.; Shuai, Y.; Chen, Y.; Zeng, D.; Feng, P. Water-Responsive Shape Memory Thermoplastic Polyurethane Scaffolds Triggered at Body Temperature for Bone Defect Repair. Mater. Chem. Front. 2022, 6, 1456–1469. DOI: 10.1039/D1QM01635K.
  • Zende, R.; Ghase, V.; Jamdar, V. A Review on Shape Memory Polymers. Poly. Plast. Technol. Mater. 2023, 62, 467–485. DOI: 10.1080/25740881.2022.2121216.
  • Ahmed, N.; Iftikhar, F.; Farooq, U.; Niaz, B.; Nauman, S.; Ahmed, N.; Dilbraiz, M. A.; Ahmed, S. Synergistic Effect of Amino-Functionalized Multiwalled Carbon Nanotube Incorporated Polyurethane Nanocomposites for High-Performance Smart Materials Applications. J. Materi. Eng. Perform. 2022, 31, 5523–5534. DOI: 10.1007/s11665-022-06614-w.
  • Tekay, E.; Şen, S. Thermo-Responsive and Electro-Active Shape Memory Poly (Styrene-b-Isoprene-b-Styrene)/Poly (Ethylene-co-1-Octene)/Graphene Composites: Effect of Size of Graphene Nanoplatelets. FlatChem 2022, 31, 100319. DOI: 10.1016/j.flatc.2021.100319.
  • Gopinath, S.; Adarsh, N. N.; Radhakrishnan Nair, P.; Mathew, S. Recent Trends in Thermo‐Responsive Elastomeric Shape Memory Polymer Nanocomposites. Polym. Compos. 2023, 44, 4433–4458. DOI: 10.1002/pc.27464.
  • Kausar, A. Contemporary Applications of Carbon Black-Filled Polymer Composites: An Overview of Essential Aspects. J. Plast. Film Sheet. 2018, 34, 256–299. DOI: 10.1177/8756087917725773.
  • Wang, Y.; Xiao, Y.; Fu, X.; Jiang, L.; Yuan, A.; Xu, H.; Wei, Z.; Lei, Y.; Lei, J. A Permanent Covalent Bond-Crosslinked Thermosetting Polymer with Room-Temperature Autonomous Self-Healing Performance. New J. Chem. 2021, 45, 21742–21749. DOI: 10.1039/D1NJ04330G.
  • Raja, M.; Ryu, S. H.; Shanmugharaj, A. Thermal, Mechanical and Electroactive Shape Memory Properties of Polyurethane (PU)/Poly (Lactic Acid)(PLA)/CNT Nanocomposites. Eur. Polym. J. 2013, 49, 3492–3500. DOI: 10.1016/j.eurpolymj.2013.08.009.
  • Zhang, Z-x.; Wang, W-y.; Yang, J-h.; Zhang, N.; Huang, T.; Wang, Y. Excellent Electroactive Shape Memory Performance of EVA/PCL/CNT Blend Composites with Selectively Localized CNTs. J. Phys. Chem. C 2016, 120, 22793–22802. DOI: 10.1021/acs.jpcc.6b06345.
  • Qi, X.; Dong, P.; Liu, Z.; Liu, T.; Fu, Q. Selective Localization of Multi-Walled Carbon Nanotubes in bi-Component Biodegradable Polyester Blend for Rapid Electroactive Shape Memory Performance. Compos. Sci. Technol. 2016, 125, 38–46. DOI: 10.1016/j.compscitech.2016.01.023.
  • Janudin, N.; et al. Electrical Performance Evaluation of Synthetic Nanofillers in Polymer Nanocomposites, in Synthetic and Natural Nanofillers in Polymer Composites; Elsevier: Netherlands, 2023; pp. 57–73.
  • Alosaimi, A. M.; Alorabi, R. O.; Katowah, D. F.; Al-Thagafi, Z. T.; Alsolami, E. S.; Hussein, M. A.; Qutob, M.; Rafatullah, M. Recent Biomedical Applications of Coupling Nanocomposite Polymeric Materials Reinforced with Variable Carbon Nanofillers. Biomedicines 2023, 11, 967. DOI: 10.3390/biomedicines11030967.
  • Singhvi, M.; Zinjarde, S.; Gokhale, D. Polylactic Acid: Synthesis and Biomedical Applications. J. Appl. Microbiol. 2019, 127, 1612–1626. DOI: 10.1111/jam.14290.
  • Xiao, L.; et al. Poly (Lactic Acid)-Based Biomaterials: Synthesis, Modification and Applications. Biomed. Sci. Engin. Technol. 2012, 11, 247–282.
  • González, J.; Ardanuy, M.; González, M.; Rodriguez, R.; Jovančić, P. Polyurethane Shape Memory Filament Yarns: Melt Spinning, Carbon-Based Reinforcement, and Characterization. Text. Res. J. 2023, 93, 957–970. DOI: 10.1177/00405175221114165.
  • Long, Z.; Wang, W.; Zhou, Y.; Yu, L.; Shen, L.; Dong, Y. Effect of Polybutylene Adipate Terephthalate on the Properties of Starch/Polybutylene Adipate Terephthalate Shape Memory Composites. Int. J. Biol. Macromol. 2023, 240, 124452. DOI: 10.1016/j.ijbiomac.2023.124452.
  • McMahon, C. Commercializing Graphene-Enhanced Polymers and Composites. Reinf. Plast. 2020, 64, 46–49. DOI: 10.1016/j.repl.2019.10.004.
  • Dhanabalan, S. C.; Dhanabalan, B.; Chen, X.; Ponraj, J. S.; Zhang, H. Hybrid Carbon Nanostructured Fibers: Stepping Stone for Intelligent Textile-Based Electronics. Nanoscale 2019, 11, 3046–3101. DOI: 10.1039/c8nr07554a.
  • Zaghloul, M. Y. M.; Zaghloul, M. M. Y.; Zaghloul, M. M. Y. Developments in Polyester Composite Materials–an in-Depth Review on Natural Fibres and Nano Fillers. Compos. Struct. 2021, 278, 114698.
  • Kim, D.; Kim, M.; Reidt, S.; Han, H.; Baghizadeh, A.; Zeng, P.; Choi, H.; Puigmartí-Luis, J.; Trassin, M.; Nelson, B. J.; et al. Shape-Memory Effect in Twisted Ferroic Nanocomposites. Nat. Commun. 2023, 14, 750. DOI: 10.1038/s41467-023-36274-w.
  • Mackanic, D. G.; Chang, T.-H.; Huang, Z.; Cui, Y.; Bao, Z. Stretchable Electrochemical Energy Storage Devices. Chem. Soc. Rev. 2020, 49, 4466–4495. DOI: 10.1039/d0cs00035c.
  • Meena, J. S.; Choi, S. B.; Jung, S.-B.; Kim, J.-W. Electronic Textiles: New Age of Wearable Technology for Healthcare and Fitness Solutions. Mater. Today. Bio 2023, 19, 100565. DOI: 10.1016/j.mtbio.2023.100565.
  • Montazer, M.; Harifi, T. Antibacterial Nanocoatings, in Nanotoxicity; Elsevier: Netherlands, 2020; pp. 399–413.
  • Fu, J.; Xu, W.; Chen, X.; Zhang, S.; Zhang, W.; Suo, P.; Lin, X.; Wang, J.; Jin, Z.; Liu, W.; et al. Thickness-Dependent Ultrafast Photocarrier Dynamics in Selenizing Platinum Thin Films. J. Phys. Chem. C 2020, 124, 10719–10726. DOI: 10.1021/acs.jpcc.0c01509.
  • Lee, K.-J.; Byeon, Y.-W.; Lee, H.-J.; Lee, Y.; Park, S.; Kim, H.-R.; Kim, H.-K.; Oh, S. J.; Ahn, J.-P. Revealing Crack-Healing Mechanism of NCM Composite Cathode for Sustainable Cyclability of Sulfide-Based Solid-State Batteries. Energy Storage Mater. 2023, 57, 326–333. DOI: 10.1016/j.ensm.2023.01.012.
  • Yang, G.; Li, H.; Xing, R.; Lv, M.; Ma, C.; Yan, J.; Zhuang, X. Thermal‐Triggered “on–off” Switchable Triboelectric Nanogenerator Based on Two‐Way Shape Memory Polymer. p. Adv. Funct. Materials 2023, 33, 2214001. DOI: 10.1002/adfm.202214001.
  • Kang, S.; Kang, T.-H.; Kim, B. S.; Oh, J.; Park, S.; Choi, I. S.; Lee, J.; Son, J. G. 2D Reentrant Micro-Honeycomb Structure of graphene-CNT in Polyurethane: High Stretchability, Superior Electrical/Thermal Conductivity, and Improved Shape Memory Properties. Composites Part B: Engineering 2019, 162, 580–588. DOI: 10.1016/j.compositesb.2019.01.004.
  • Guo, F.; Zheng, X.; Liang, C.; Jiang, Y.; Xu, Z.; Jiao, Z.; Liu, Y.; Wang, H. T.; Sun, H.; Ma, L.; et al. Millisecond Response of Shape Memory Polymer Nanocomposite Aerogel Powered by Stretchable Graphene Framework. ACS Nano. 2019, 13, 5549–5558. DOI: 10.1021/acsnano.9b00428.
  • Xie, H.; Li, L.; Cheng, C.-Y.; Yang, K.-K.; Wang, Y.-Z. Poly (Ethylene-co-Vinyl Acetate)/Graphene Shape-Memory Actuator with a Cyclic Thermal/Light Dual-Sensitive Capacity. Compos. Sci. Technol. 2019, 173, 41–46. DOI: 10.1016/j.compscitech.2019.01.020.
  • Shi, K.; Xu, J.; Jiang, Z.; Lv, J.; Lu, Y. Mechanical Properties of New Composite Wood-Plastic Formworks with Aluminum Alloy Frame. Adv. Civ. Eng. 2020, 2020, 1–19. DOI: 10.1155/2020/8831999.
  • Petrone, C.; Magliulo, G.; Manfredi, G. Mechanical Properties of Plasterboards: Experimental Tests and Statistical Analysis. J. Mater. Civ. Eng. 2016, 28, 04016129. DOI: 10.1061/(ASCE)MT.1943-5533.0001630.
  • Gardner, D.; Lark, R.; Jefferson, T.; Davies, R. A Survey on Problems Encountered in Current Concrete Construction and the Potential Benefits of Self-Healing Cementitious Materials. Case Stud. Constr. Mater. 2018, 8, 238–247. DOI: 10.1016/j.cscm.2018.02.002.
  • Şimşek, B. Investigation of Self-Healing Ability of Hydroxyapatite Blended Cement Paste Modified with Graphene Oxide and Silver Nanoparticles. Constr. Build. Mater. 2022, 320, 126250. DOI: 10.1016/j.conbuildmat.2021.126250.
  • Liu, Y.; Genzer, J.; Dickey, M. D. “2D or Not 2D”: Shape-Programming Polymer Sheets. Prog. Polym. Sci. 2016, 52, 79–106. DOI: 10.1016/j.progpolymsci.2015.09.001.
  • Sosnowicz, W. Production of Graphene Coatings for Applications in Tissue Engineering and Food Industry; The Institute of Metrology and Biomedical Engineering (FM/IMBE): Warsaw, Poland, 2020.
  • Hasan, S. M.; Harmon, G.; Zhou, F.; Raymond, J. E.; Gustafson, T. P.; Wilson, T. S.; Maitland, D. J. Tungsten‐Loaded SMP Foam Nanocomposites with Inherent Radiopacity and Tunable Thermo‐Mechanical Properties. Polym. Adv. Technol. 2016, 27, 195–203. DOI: 10.1002/pat.3621.
  • Liu, Y.; Zhao, J.; Zhao, L.; Li, W.; Zhang, H.; Yu, X.; Zhang, Z. High Performance Shape Memory Epoxy/Carbon Nanotube Nanocomposites. ACS Appl. Mater. Interfaces. 2016, 8, 311–320. DOI: 10.1021/acsami.5b08766.
  • Das, R.; Melchior, C.; Karumbaiah, K. Self-Healing Composites for Aerospace Applications, in Advanced Composite Materials for Aerospace Engineering; Elsevier: Netherlands, 2016; pp. 333–364.
  • Eddy, D. R.; Luthfiah, A.; Permana, M. D.; Deawati, Y.; Firdaus, M. L.; Rahayu, I.; Izumi, Y. Rapid Probing of Self-Cleaning Activity on Polyester Coated by Titania–Natural Silica Nanocomposite Using Digital Image-Based Colorimetry. ACS Omega. 2023, 8, 7858–7867. DOI: 10.1021/acsomega.2c07606.
  • Huang, X.; Panahi-Sarmad, M.; Dong, K.; Li, R.; Chen, T.; Xiao, X. Tracing Evolutions in Electro-Activated Shape Memory Polymer Composites with 4D Printing Strategies: A Systematic Review. Composites Part A: Applied Science and Manufacturing 2021, 147, 106444. DOI: 10.1016/j.compositesa.2021.106444.
  • Sabzi, M.; Babaahmadi, M.; Rahnama, M. Thermally and Electrically Triggered Triple-Shape Memory Behavior of Poly (Vinyl Acetate)/Poly (Lactic Acid) Due to Graphene-Induced Phase Separation. ACS Appl. Mater. Interfaces. 2017, 9, 24061–24070. DOI: 10.1021/acsami.7b02259.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.