36
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Cytocompatible hydrogel derived from dextrin and Poly(N-Vinyl acetamide) toward controlled antimicrobial release

, &
Received 17 Apr 2024, Accepted 10 May 2024, Published online: 03 Jun 2024

References

  • Das, D.; Roy, A.; Pal, S. A Polysaccharide-Based PH-Sensitive Hybrid Hydrogel as a Sustained Release Matrix for Antimicrobial Drugs. ACS Appl. Polym. Mater 2023, 5, 3348–3358. DOI: 10.1021/acsapm.2c02256.
  • Das, D.; Cho, H.; Kim, N.; Pham, T. T. H.; Kim, I. G.; Chung, E.-J.; Noh, I. A Terpolymeric Hydrogel of Hyaluronate-Hydroxyethyl Acrylate-Gelatin Methacryloyl with Tunable Properties as Biomaterial. Carbohydr. Polym. 2019, 207, 628–639. DOI: 10.1016/j.carbpol.2018.12.020.
  • Das, D.; Pham, H. T. T.; Lee, S.; Noh, I. Fabrication of Alginate-Based Stimuli-Responsive, Non-Cytotoxic, Terpolymeric Semi-IPN Hydrogel as a Carrier for Controlled Release of Bovine Albumin Serum and 5-Amino Salicylic Acid. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 98, 42–53. DOI: 10.1016/j.msec.2018.12.127.
  • Mondal, S.; Das, S.; Nandi, A. K. A Review on Recent Advances in Polymer and Peptide Hydrogels. Soft Matter. 2020, 16, 1404–1454. DOI: 10.1039/C9SM02127B.
  • Bhaladhare, S.; Das, D. Cellulose: A Fascinating Biopolymer for Hydrogel Synthesis. J. Mater. Chem. B 2022, 10, 1923–1945. DOI: 10.1039/D1TB02848K.
  • Das, D.; Bang, S.; Zhang, S.; Noh, I. Bioactive Molecules Release and Cellular Responses of Alginate-Tricalcium Phosphate Particles Hybrid Gel. Nanomaterials (Basel) 2017, 7, 389. DOI: 10.3390/nano7110389.
  • Ghosh, D.; Roy, S. G.; De, P. Amino Acid-Based Polymeric Gel Network and Its Application in Different Fields. J. Indian Chem. Soc. 2022, 99, 100366. DOI: 10.1016/j.jics.2022.100366.
  • Roy, A.; Guha Ray, P.; Bose, A.; Dhara, S.; Pal, S. PH-Responsive Copolymeric Network Gel Using Methacrylated β-Cyclodextrin for Controlled Codelivery of Hydrophilic and Hydrophobic Drugs. ACS Appl. Bio Mater. 2022, 5, 3530–3543. DOI: 10.1021/acsabm.2c00473.
  • Haldar, U.; Bauri, K.; Li, R.; Faust, R.; De, P. Polyisobutylene-Based PH-Responsive Self-Healing Polymeric Gels. ACS Appl. Mater. Interfaces 2015, 7, 8779–8788. DOI: 10.1021/acsami.5b01272.
  • Liu, J.; Du, C.; Huang, W.; Lei, Y. Injectable Smart Stimuli-Responsive Hydrogels: Pioneering Advancements in Biomedical Applications. Biomater. Sci. 2024, 12, 8–56. DOI: 10.1039/D3BM01352A.
  • Pan, A.; Roy, S. G.; Haldar, U.; Mahapatra, R. D.; Harper, G. R.; Low, W. L.; De, P.; Hardy, J. G. Uptake and Release of Species from Carbohydrate Containing Organogels and Hydrogels. Gels 2019, 5, 43. DOI: 10.3390/gels5040043.
  • Singh, Y. P.; Bandyopadhyay, A.; Bhardwaj, N.; Mandal, B. B. Silk Hydrogel-Based Delivery of Cell and Bioactive Molecules for Osteochondral Tissue Engineering Applications. In Hydrogels for Tissue Engineering and Regenerative Medicine; Elsevier, 2024, pp 483–507. DOI: 10.1016/B978-0-12-823948-3.00037-3.
  • Bhunia, B. K.; Bandyopadhyay, A.; Dey, S.; Mandal, B. B. Silk-Hydrogel Functionalized with Human Decellularized Wharton’s Jelly Extracellular Matrix as a Minimally Invasive Injectable Hydrogel System for Potential Nucleus Pulposus Tissue Replacement Therapy. Int. J. Biol. Macromol. 2024, 254, 127686. DOI: 10.1016/j.ijbiomac.2023.127686.
  • Chummun, I.; Gimié, F.; Goonoo, N.; Arsa, I. A.; Cordonin, C.; Jhurry, D.; Bhaw-Luximon, A. Polysucrose Hydrogel and Nanofiber Scaffolds for Skin Tissue Regeneration: Architecture and Cell Response. Mater. Sci. Eng. C Mater. Biol. Appl. 2022, 135, 112694. DOI: 10.1016/j.msec.2022.112694.
  • Wasnik, K.; Gupta, P. S.; Mukherjee, S.; Oviya, A.; Prakash, R.; Pareek, D.; Patra, S.; Maity, S.; Rai, V.; Singh, M.; et al. Poly (N-Acryloylglycine-Acrylamide) Hydrogel Mimics the Cellular Microenvironment and Promotes Neurite Growth with Protection from Oxidative Stress. ACS Appl. Bio Mater. 2023, 6, 5644–5661. DOI: 10.1021/acsabm.3c00807.
  • Jia, Z.; Gwynne, L.; Sedgwick, A. C.; Müller, M.; Williams, G. T.; Jenkins, A. T. A.; James, T. D.; Schönherr, H. Enhanced Colorimetric Differentiation between Staphylococcus Aureus and Pseudomonas Aeruginosa Using a Shape-Encoded Sensor Hydrogel. ACS Appl. Bio Mater. 2020, 3, 4398–4407. DOI: 10.1021/acsabm.0c00403.
  • Das, D.; Alhusaini, Q. F. M.; Kaur, K.; Raoufi, M.; Schönherr, H. Enzyme-Responsive Biopolymeric Nanogel Fibers by Extrusion: Engineering of High-Surface-Area Hydrogels and Application in Bacterial Enzyme Detection. ACS Appl. Mater. Interfaces 2021, 13, 12928–12940. DOI: 10.1021/acsami.1c00136.
  • Jia, Z.; Müller, M.; Le Gall, T.; Riool, M.; Müller, M.; Zaat, S. A. J.; Montier, T.; Schönherr, H. Multiplexed Detection and Differentiation of Bacterial Enzymes and Bacteria by Color-Encoded Sensor Hydrogels. Bioact. Mater. 2021, 6, 4286–4300. DOI: 10.1016/j.bioactmat.2021.04.022.
  • Kinyua, C. K.; Owino, A. O.; Kaur, K.; Das, D.; Karuri, N. W.; Müller, M.; Schönherr, H. Impact of Surface Area on Sensitivity in Autonomously Reporting Sensing Hydrogel Nanomaterials for the Detection of Bacterial Enzymes. Chemosensors 2022, 10, 299. DOI: 10.3390/chemosensors10080299.
  • Bhowmik, S.; Ghosh, T.; Sanghvi, Y. S.; Das, A. K. Synthesis and Structural Studies of Nucleobase Functionalized Hydrogels for Controlled Release of Vitamins. ACS Appl. Bio Mater. 2023, 6, 5301–5309. DOI: 10.1021/acsabm.3c00582.
  • Kundu, D.; Banerjee, T. Carboxymethyl Cellulose–Xylan Hydrogel: Synthesis, Characterization, and in Vitro Release of Vitamin B 12. ACS Omega 2019, 4, 4793–4803. DOI: 10.1021/acsomega.8b03671.
  • Lyu, Y.; Azevedo, H. S. Supramolecular Hydrogels for Protein Delivery in Tissue Engineering. Molecules 2021, 26, 873. DOI: 10.3390/molecules26040873.
  • Malta, R.; Marques, A. C.; Costa, P. C. D.; Amaral, M. H. Stimuli-Responsive Hydrogels for Protein Delivery. Gels 2023, 9, 802. DOI: 10.3390/gels9100802.
  • Mukherjee, I.; Ghosh, A.; Bhadury, P.; De, P. Matrix-Assisted Regulation of Antimicrobial Properties: Mechanistic Elucidation with Ciprofloxacin-Based Polymeric Hydrogel against Vibrio Species. Bioconjug. Chem. 2019, 30, 218–230. DOI: 10.1021/acs.bioconjchem.8b00846.
  • Goregen, İS.; Ozay, O. Use of Polyvinyl Alcohol-Based Cationic Hydrogels Modified with Gold Nanoparticles as Drug and Gene Delivery Systems with Enhanced Antibacterial Properties. J. Macromol. Sci. Part A 2023, 60, 778–789. DOI: 10.1080/10601325.2023.2258929.
  • Alqahtani, M. S.; Kazi, M.; Alsenaidy, M. A.; Ahmad, M. Z. Advances in Oral Drug Delivery. Front. Pharmacol. 2021, 12, 618411. DOI: 10.3389/fphar.2021.618411.
  • Zhang, Y.; Qi, J.; Fan, H.; Chen, P.; Li, B.; Zhao, L.; Bai, Z.; Zhang, R.; Tao, Y. Conductive, Injectable, and Spinnable Aniline Tetramer-Modified Polysaccharide Hydrogels for Self-Powered Electrically Responsive Drug Release. ACS Appl. Polym. Mater 2022, 4, 9206–9220. DOI: 10.1021/acsapm.2c01506.
  • Qi, X.; Yuan, Y.; Zhang, J.; Bulte, J. W. M.; Dong, W. Oral Administration of Salecan-Based Hydrogels for Controlled Insulin Delivery. J. Agric. Food Chem. 2018, 66, 10479–10489. DOI: 10.1021/acs.jafc.8b02879.
  • Xu, C.; Chen, Y.; Zheng, Z.; Liu, Y.; Cao, S.; Xu, Y. Mussel-Inspired Biocompatible PAADOPA/PAAm Hydrogel Adhesive for Amoxicillin Delivery. Ind. Eng. Chem. Res. 2020, 59, 13556–13563. DOI: 10.1021/acs.iecr.0c01720.
  • Alkekhia, D.; LaRose, C.; Shukla, A. β-Lactamase-Responsive Hydrogel Drug Delivery Platform for Bacteria-Triggered Cargo Release. ACS Appl. Mater. Interfaces 2022, 14, 27538–27550. DOI: 10.1021/acsami.2c02614.
  • Caldera-Villalobos, M.; Claudio-Rizo, J. A.; Rodríguez-Estrada, V. A.; Cabrera Munguía, D. A.; Becerra-Rodríguez, J. J. Effect of the Content of Starch on the Biocompatibility, Bacterial Inhibition, and Drug Release Performance of Semi-IPN Collagen-Polyurethane Hydrogels. J. Macromol. Sci. Part A 2023, 60, 124–134. DOI: 10.1080/10601325.2023.2166842.
  • Ganguly, S.; Maity, P. P.; Mondal, S.; Das, P.; Bhawal, P.; Dhara, S.; Das, N. C. Polysaccharide and Poly(Methacrylic Acid) Based Biodegradable Elastomeric Biocompatible Semi-IPN Hydrogel for Controlled Drug Delivery. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 92, 34–51. DOI: 10.1016/j.msec.2018.06.034.
  • Kıvanç, M. R. A Green Approach to Synthesize Silver Nanoparticles in Gelatin/Poly(2-Hydroxyethylmethacrylate-Co-2-Acrylamido-2-Methyl-1-Propanesulfonic Acid) Hydrogels with Verbascum Longipedicellatum Extract and Their Antibacterial Activity. J. Macromol. Sci. Part A 2022, 59, 828–837. DOI: 10.1080/10601325.2022.2140676.
  • Durmus, S.; Ozay, O. Synthesis and Characterization of Methacrylic Acid Based Amphoteric Hydrogels: Use as a Dual Drug Delivery System. J. Macromol. Sci. Part A 2022, 59, 646–656. DOI: 10.1080/10601325.2022.2107933.
  • Dharmapalan, D.; Bielicki, J.; Sharland, M. Harmonization of Amoxicillin Dose, Duration, and Formulation for Acute Childhood Respiratory Infections. Antibiotics (Basel) 2023, 12, 1138. DOI: 10.3390/antibiotics12071138.
  • Khan, Y. A.; Ozaltin, K.; Bernal-Ballen, A.; Di Martino, A. Chitosan-Alginate Hydrogels for Simultaneous and Sustained Releases of Ciprofloxacin, Amoxicillin and Vancomycin for Combination Therapy. J. Drug Deliv. Sci. Technol. 2021, 61, 102126. DOI: 10.1016/j.jddst.2020.102126.
  • Das, D.; Das, R.; Mandal, J.; Ghosh, A.; Pal, S. Dextrin Crosslinked with Poly(Lactic Acid): A Novel Hydrogel for Controlled Drug Release Application. J. Appl. Polym. Sci. 2014, 131, 40039. DOI: 10.1002/app.40039.
  • Das, D.; Ghosh, P.; Ghosh, A.; Haldar, C.; Dhara, S.; Panda, A. B.; Pal, S. Stimulus-Responsive, Biodegradable, Biocompatible, Covalently Cross-Linked Hydrogel Based on Dextrin and Poly(N -Isopropylacrylamide) for in Vitro/in Vivo Controlled Drug Release. ACS Appl. Mater. Interfaces 2015, 7, 14338–14351. DOI: 10.1021/acsami.5b02975.
  • Das, D.; Ghosh, P.; Dhara, S.; Panda, A. B.; Pal, S. Dextrin and Poly(Acrylic Acid)-Based Biodegradable, Non-Cytotoxic, Chemically Cross-Linked Hydrogel for Sustained Release of Ornidazole and Ciprofloxacin. ACS Appl. Mater. Interfaces 2015, 7, 4791–4803. DOI: 10.1021/am508712e.
  • Das, D.; Das, R.; Ghosh, P.; Dhara, S.; Panda, A. B.; Pal, S. Dextrin Cross Linked with Poly(HEMA): A Novel Hydrogel for Colon Specific Delivery of Ornidazole. RSC Adv. 2013, 3, 25340–25350. DOI: 10.1039/c3ra44716b.
  • Sanmukhani, J.; Shah, V.; Baxi, S.; Tripathi, C. Fixed Drug Eruption with Ornidazole Having Cross‐Sensitivity to Secnidazole but Not to Other Nitro‐Imidazole Compounds: A Case Report. Br. J. Clin. Pharmacol. 2010, 69, 703–704. DOI: 10.1111/j.1365-2125.2010.03651.x.
  • Magdy, G.; Aboelkassim, E.; El-Domany, R. A.; Belal, F. Green Synthesis, Characterization, and Antimicrobial Applications of Silver Nanoparticles as Fluorescent Nanoprobes for the Spectrofluorimetric Determination of Ornidazole and Miconazole. Sci. Rep. 2022, 12, 21395. DOI: 10.1038/s41598-022-25830-x.
  • Das, D.; Pal, S. Dextrin/Poly (HEMA): PH Responsive Porous Hydrogel for Controlled Release of Ciprofloxacin. Int. J. Biol. Macromol. 2015, 72, 171–178. DOI: 10.1016/j.ijbiomac.2014.08.007.
  • Ho, D.-K.; Nichols, B. L. B.; Edgar, K. J.; Murgia, X.; Loretz, B.; Lehr, C.-M. Challenges and Strategies in Drug Delivery Systems for Treatment of Pulmonary Infections. Eur. J. Pharm. Biopharm. 2019, 144, 110–124. DOI: 10.1016/j.ejpb.2019.09.002.
  • Sosnik, A.; Augustine, R. Challenges in Oral Drug Delivery of Antiretrovirals and the Innovative Strategies to Overcome Them. Adv. Drug Deliv. Rev. 2016, 103, 105–120. DOI: 10.1016/j.addr.2015.12.022.
  • Homayun, B.; Lin, X.; Choi, H.-J. Challenges and Recent Progress in Oral Drug Delivery Systems for Biopharmaceuticals. Pharmaceutics 2019, 11, 129. DOI: 10.3390/pharmaceutics11030129.
  • Bas, Y.; Sanyal, R.; Sanyal, A. Hyaluronic-Acid Based Redox-Responsive Hydrogels Using the Diels-Alder Reaction for on-Demand Release of Biomacromolecules. J. Macromol. Sci. Part A 2023, 60, 246–254. DOI: 10.1080/10601325.2023.2190357.
  • Das, S. S.; Sharma, D.; Rao, B. V. K.; Arora, M. K.; Ruokolainen, J.; Dhanka, M.; Singh, H.; Kesari, K. K. Natural Cationic Polymer-Derived Injectable Hydrogels for Targeted Chemotherapy. Mater. Adv. 2023, 4, 6064–6091. DOI: 10.1039/D3MA00484H.
  • An, Y.; Zhai, R.; Chen, J.; Xie, P. Preparation and Application of a Novel PH-Responsive Linalool Carboxymethyl Chitosan Hydrogel. J. Macromol. Sci. Part A 2023, 60, 336–345. DOI: 10.1080/10601325.2023.2195879.
  • Zhang, Y.; Dong, L.; Liu, L.; Wu, Z.; Pan, D.; Liu, L. Recent Advances of Stimuli-Responsive Polysaccharide Hydrogels in Delivery Systems: A Review. J. Agric. Food Chem. 2022, 70, 6300–6316. DOI: 10.1021/acs.jafc.2c01080.
  • Kolthoff, I. M.; Miller, I. K. The Chemistry of Persulfate. I. The Kinetics and Mechanism of the Decomposition of the Persulfate Ion in Aqueous Medium 1. J. Am. Chem. Soc. 1951, 73, 3055–3059. DOI: 10.1021/ja01151a024.
  • Ajiro, H.; Hongo, C.; Akashi, M. Design and Synthesis of N-Vinylacetamide Derivative with Bulky Group by Nucleophilic Substitution Reaction. J. Mol. Struct. 2010, 964, 67–71. DOI: 10.1016/j.molstruc.2009.11.012.
  • Bankoti, K.; Rameshbabu, A. P.; Datta, S.; Goswami, P.; Roy, M.; Das, D.; Ghosh, S. K.; Das, A. K.; Mitra, A.; Pal, S.; et al. Dual Functionalized Injectable Hybrid Extracellular Matrix Hydrogel for Burn Wounds. Biomacromolecules 2021, 22, 514–533. DOI: 10.1021/acs.biomac.0c01400.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.