19
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synthesis and properties of bio-based polyesters from a 2,4-dihydroxyacetophenone derivative

, ORCID Icon, ORCID Icon & ORCID Icon
Received 02 Apr 2024, Accepted 26 May 2024, Published online: 13 Jun 2024

References

  • Navrátilová, L.; Výbošťok, J.; Dobšinská, Z.; Šálka, J.; Pichlerová, M.; Pichler, V. Assessing the Potential of Bioeconomy in Slovakia Based on Public Perception of Renewable Materials in Contrast to Non-Renewable Materials. Ambio 2020, 49, 1912–1924. DOI: 10.1007/s13280-020-01368-y.
  • Hai, T. A. P.; Tessman, M.; Neelakantan, N.; Samoylov, A. A.; Ito, Y.; Rajput, B. S.; Pourahmady, N.; Burkart, M. D. Renewable Polyurethanes from Sustainable Biological Precursors. Biomacromolecules 2021, 22, 1770–1794. DOI: 10.1021/acs.biomac.0c01610.
  • Ngo, T. Development of Sustainable Flame-Retardant Materials. Green Mater. 2020, 8, 101–122. DOI: 10.1680/jgrma.19.00060.
  • Ataeian, P.; Trinh, B. M.; Mekonnen, T. H. Effect of Pro-Oxidants on the Aerobic Biodegradation, Disintegration, and Physio-Mechanical Properties of Compostable Polymers. J. Appl. Polym. Sci. 2023, 141, e54970–54985. DOI: 10.1002/app.54970.
  • Gülel, Ş.; Güvenilir, Y. Lipase Catalyzed Synthesis of Bio-Based Polyamide 5.6: An Alternative Route. J. Macromol. Sci. A-Pure Appl. Chem. 2024, 61, 69–78. DOI: 10.1080/10601325.2023.2296646.
  • McKenzie, T.; Gaw, I. M. Climate Change Exacerbates Almost Two-Thirds of Pathogenic Diseases Affecting Humans. Nat. Clim. Change 2022, 12, 791–791. DOI: 10.1038/s41558-022-01435-0.
  • Lu, Y.; Han, R.; Schwaneberg, U.; Ji, Y. Commentary: Polymer Binding Modules Accelerate Enzymatic Degradation of Poly(Ethylene Terephthalate). Chin. J. Biotechnol. 2023, 39, 1883–1888. DOI: 10.13345/j.cjb.221033.
  • Raha, U. K.; Kumar, B. R.; Sarkar, S. K. Policy Framework for Mitigating Land-Based Marine Plastic Pollution in the Gangetic Delta Region of Bay of Bengal- A Review. J. Cleaner Prod. 2021, 278, 123409. DOI: 10.1016/j.jclepro.2020.123409.
  • Thiounn, T.; Smith, R. C. Advances and Approaches for Chemical Recycling of Plastic Waste. J. Polym. Sci. 2020, 58, 1347–1364. DOI: 10.1002/pol.20190261.
  • Zhang, H. Y.; Zhou, G. Y.; Jiang, M.; Zhang, H. Y.; Wang, H. H.; Wu, Y. P.; Wang, R. Bio-Based Polyesters with High Glass-Transition Temperatures and Gas Barrier Properties Derived from Renewable Rigid Tricyclic Diacid or Tetracyclic Anhydride. Macromolecules 2020, 53, 5475–5486. DOI: 10.1021/acs.macromol.0c00344.
  • Inaner, N. B.; Demirel, B.; Yaras, A.; Akkurt, F.; Daver, F. Improvement of Environmental Stress Cracking Performance, Load-Carrying Capacity, and UV Light Barrier Property of Polyethylene Terephthalate Packaging Material. Polym. Adv. Techs. 2022, 33, 2352–2361. DOI: 10.1002/pat.5692.
  • Zhang, J.; Zhu, W. X.; Li, C. C.; Zhang, D.; Xiao, Y. N.; Guan, G. H.; Zheng, L. C. Aliphatic-Aromatic Poly(Butylene Carbonate-co-Terephthalate) Random Copolymers: Synthesis, Cocrystallization, and Composition-Dependent Properties. J. Appl. Polym. Sci. 2015, 132, 41952–41962. DOI: 10.1002/app.41952.
  • Zhang, B. Y.; Sun, Q. J.; Li, Q. Y.; Wang, Y. Thermal, Morphological, and Mechanical Characteristics of Polypropylene/Polybutylene Terephthalate Blends with a Liquid Crystalline Polymer or Ionomer. J. Appl. Polym. Sci. 2006, 102, 4712–4719. DOI: 10.1002/app.24797.
  • Pokhrel, S.; Sigdel, A.; Lach, R.; Slouf, M.; Sirc, J.; Katiyar, V.; Bhattarai, D. R.; Adhikari, R. Starch-Based Biodegradable Film with Poly(Butylene Adipate-co-Terephthalate): Preparation, Morphology, Thermal and Biodegradation Properties. J. Macromol. Sci. A-Pure Appl. Chem. 2021, 58, 610–621. DOI: 10.1080/10601325.2021.1920838.
  • Post, C.; Maniar, D.; Voet, V. S. D.; Folkersma, R.; Loos, K. Biobased 2,5-Bis(Hydroxymethyl)Furan as a Versatile Building Block for Sustainable Polymeric Materials. ACSOmega 2023, 8, 8991–9003. DOI: 10.1021/acsomega.2c07629.
  • Allen, D. J.; Ishida, H. Physical and Mechanical Properties of Flexible Polybenzoxazine Resins: Effect of Aliphatic Diamine Chain Length. J. Appl. Polym. Sci. 2006, 101, 2798–2809. DOI: 10.1002/app.22501.
  • Mahalik, J. P.; Madras, G. Enzymatic Degradation of Poly(D,L-Lactide) and ItsBlends with Poly(Vinyl Acetate). J. Appl. Polym. Sci. 2006, 101, 675–680. DOI: 10.1002/app.23817.
  • Yu, Y.; Liu, H.; Wei, Z. Y. Synthesis, Physical Properties, and Functionalization of Biobased Unsaturated Polyesters Derived from Cis-2-Butene-1,4-Diol. Polym. Degrad. Stab. 2022, 206, 110203–110213. DOI: 10.1016/j.polymdegradstab.2022.110203.
  • Kim, Y. J.; Kang, G. D.; Yoon, K. C.; Park, O. O. Comparison of Mechanical Properties of Blended and Synthesized Biodegradable Polyesters. Macromol. Res. 2014, 22, 382–387. DOI: 10.1007/s13233-014-2059-0.
  • Basak, S. Thermoplastic Elastomers in Biomedical Industry-Evolution and Current Trends. J. Macromol. Sci. A Pure Appl. Chem. 2021, 58, 579–593. DOI: 10.1080/10601325.2021.1922086.
  • Luz, F. S.; Candido, V. S.; da Silva, A. C. R.; Monteiro, S. N. Thermal Behavior of Polyester Composites Reinforced with Green Sugarcane Bagasse Fiber. JOM 2018, 70, 1965–1971. DOI: 10.1007/s11837-018-3086-7.
  • Zaidi, S.; Soares, M. J.; Bougarech, A.; Thiyagarajan, S.; Guigo, N.; Abid, S.; Abid, M.; Silvestre, A. J. D.; Sousa, A. F. Unravelling the Para- and Ortho-Benzene Substituent Effect on the Glass Transition of Renewable Wholly (Hetero-)Aromatic Polyesters Bearing 2,5-Furandicarboxylic Moieties. Eur. Polym. J. 2021, 150, 110413–110420. DOI: 10.1016/j.eurpolymj.2021.110413.
  • Mendes, G.; Oliveira, D. D.; Kohlhoff, M.; Rosa, C. A.; Alves, T.; Zani, C. L.; Rosa, L. H.; Johann, S.; Cota, B. B. Alkaloidal Metabolites from Aspergillus Felis and Their Activities against Paracoccidioides Brasiliensis. Phytochem. Lett. 2016, 17, 28–35. DOI: 10.1016/j.phytol.2016.06.006.
  • Li, X. J.; Shi, X. W.; Shuai, Q.; Gao, J. M.; Zhang, A. L. Bioactive Metabolites from Biotransformation of Paeonol by the White-Rot Basidiomycete Coriolus Versicolor. Nat. Prod. Commun. 2011, 6, 1129–1130. DOI: 10.1177/1934578X1100600820.
  • Barratt, S. R.; Ennos, A. R.; Greenhalgh, M.; Robson, G. D.; Handley, P. S. Fungi Are the Predominant Micro-Organisms Responsible for Degradation of Soil-Buried Polyester Polyurethane over a Range of Soil Water Holding Capacities. J. Appl. Microbiol. 2003, 95, 78–85. DOI: 10.1046/j.1365-2672.2003.01961.x.
  • Tareen, A.; Saeed, S.; Iqbal, A.; Batool, R.; Jamil, N. Biodeterioration of Microplastics: APromising Step towards Plastics Waste Management. Polymers (Basel) 2022, 14, 2275–2289. DOI: 10.3390/polym14112275.
  • Slezak, R.; Krzystek, L.; Puchalski, M.; Krucińska, I.; Sitarski, A. Degradation of Bio-Based Film Plastics in Soil under Natural Conditions. Sci. Total Environ. 2023, 866, 161401–161409. DOI: 10.1016/j.scitotenv.2023.161401.
  • Telegdi, J.; Trif, L.; Nagy, E.; Mihály, J.; Molnár, N. New Comonomers in Malic Acid Polyesters. J. Therm. Anal. Calorim. 2017, 129, 991–1000. DOI: 10.1007/s10973-017-6230-7.
  • Barluenga, J.; Baragaña, B.; Concellón, J. M.; Piñera-Nicolás, A.; Díaz, M. R.; García-Granda, S. Synthesis of Enantiopure α′-Amino α,β-Epoxy Ketones from α′-Amino Bromomethyl Ketones. J. Org. Chem. 1999, 64, 5048–5052. DOI: 10.1021/jo982435z.
  • Huong, K. H.; Teh, C. H.; Amirul, A. A. Microbial-Based Synthesis of Highly Elastomeric Biodegradable Poly(3-Hydroxybutyrate-co-4-Hydroxybutyrate) Thermoplastic. Int. J. Biol. Macromol. 2017, 101, 983–995. DOI: 10.1016/j.ijbiomac.2017.03.179.
  • Feng, H.; Feng, Z. J.; Mao, Y. C.; Deng, Z. L.; Zheng, B. C. Study on the Polymerization Process and Monomer Reactivity of EPEG-Type Polycarboxylate Superplasticizer. J. Appl. Polym. Sci. 2022, 139, e52569–52571. DOI: 10.1002/app.52697.
  • Rohindra, D.; Kuboyama, K.; Ougizawa, T. Dominant Factors Affecting the Pressure Dependence of Melting Temperatures in Homologous Series of Aliphatic Polyesters. Eur. Polym. J. 2012, 48, 1768–1776. DOI: 10.1016/j.eurpolymj.2012.07.013.
  • Zamboulis, A.; Papadopoulos, L.; Terzopoulou, Z.; Bikiaris, D. N.; Patsiaoura, D.; Chrissafis, K.; Gazzano, M.; Lotti, N.; Papageorgiou, G. Z. Synthesis, Thermal Properties and Decomposition Mechanism of Poly(Ethylene Vanillate) Polyester. Polymers (Basel) 2019, 11, 1672–1698. DOI: 10.3390/polym11101672.
  • Rychter, P.; Biczak, R.; Herman, B.; Smyłła, A.; Kurcok, P.; Adamus, G.; Kowalczuk, M. Environmental Degradation of Polyester Blends Containing Atactic Poly(3-Hydroxybutyrate), Biodegradation in Soil and Ecotoxicological Impact. Biomacromolecules 2006, 7, 3125–3131. DOI: 10.1021/bm060708r.
  • Djouonkep, L. D. W.; Tchameni, A. P.; Selabi, N. B. S.; Tamo, A. K.; Doench, I.; Cheng, Z.; Gauthier, M.; Xie, B.; Osorio-Madrazo, A. Bio-Based Degradable Poly(Ether-Ester)s from Melt-Polymerization of Aromatic Ester and Ether Diols. Int. J. Mol. Sci. 2022, 23, 8967. DOI: 10.3390/ijms23168967.
  • Wang, H.; Cheng, Z. Z.; Djouonkep, L. D. W.; Wang, L. F.; Cai, S. P.; Gauthier, M. Synthesis and Properties of Biodegradable Aliphatic–Aromatic Polyesters Derived from 4‐Hydroxybenzaldehyde. J. Appl. Polym. Sci. 2023, 140, e54063. DOI: 10.1002/app.54063.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.