27
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A brief account of nanomaterials-reinforced polymer composites with sustained conductivity for flexible electronics

, &
Received 09 May 2024, Accepted 28 May 2024, Published online: 24 Jun 2024

References

  • Khan, Y.; Thielens, A.; Muin, S.; Ting, J.; Baumbauer, C.; Arias, A. C. A New Frontier of Printed Electronics: Flexible Hybrid Electronics. Adv. Mater. 2020, 32, 1905279.
  • Yang, Y.; Wu, Y.; Li, C.; Yang, X.; Chen, W. Flexible Actuators for Soft Robotics. Adv. Intell. Syst. 2020, 2, 1900077.
  • Li, H.; Ma, Y.; Huang, Y. Material Innovation and Mechanics Design for Substrates and Encapsulation of Flexible Electronics: A Review. Mater. Horiz. 2021, 8, 383–400. DOI: 10.1039/D0MH00483A.
  • Conti, S.; Calabrese, G.; Parvez, K.; Pimpolari, L.; Pieri, F.; Iannaccone, G.; Casiraghi, C.; Fiori, G. Printed Transistors Made of 2D Material-Based Inks. Nat. Rev. Mater. 2023, 8, 651–667. DOI: 10.1038/s41578-023-00585-7.
  • Maggini, L.; Ferreira, R. R. 2D Material Hybrid Heterostructures: Achievements and Challenges towards High Throughput Fabrication. J. Mater. Chem. C 2021, 9, 15721–15734. DOI: 10.1039/D1TC04253J.
  • Liu, K.; Ouyang, B.; Guo, X.; Guo, Y.; Liu, Y. Advances in Flexible Organic Field-Effect Transistors and Their Applications for Flexible Electronics. npj Flex. Electron. 2022, 6, 1.
  • Gong, M.; Zhang, L.; Wan, P. Polymer Nanocomposite Meshes for Flexible Electronic Devices. Prog. Polym. Sci. 2020, 107, 101279. DOI: 10.1016/j.progpolymsci.2020.101279.
  • Gu, Y.; Zhang, T.; Chen, H.; Wang, F.; Pu, Y.; Gao, C.; Li, S. Mini Review on Flexible and Wearable Electronics for Monitoring Human Health Information. Nanoscale Res. Lett. 2019, 14, 263.
  • Yun, G.; Tang, S. Y.; Lu, H.; Zhang, S.; Dickey, M. D.; Li, W. Hybrid-Filler Stretchable Conductive Composites: From Fabrication to Application. Small Sci. 2021, 1, 2000080.
  • Lim, Y. W.; Jin, J.; Bae, B. S. Optically Transparent Multiscale Composite Films for Flexible and Wearable Electronics. Adv. Mater. 2020, 32, 1907143.
  • Namsheer, K.; Rout, C. S. Conducting Polymers: A Comprehensive Review on Recent Advances in Synthesis, Properties and Applications. RSC Adv. 2021, 11, 5659–5697.
  • Lu, X.; Zhang, W.; Wang, C.; Wen, T. C.; Wei, Y. One-Dimensional Conducting Polymer Nanocomposites: Synthesis, Properties and Applications. Prog. Polym. Sci. 2011, 36, 671–712. DOI: 10.1016/j.progpolymsci.2010.07.010.
  • Ouyang, J. Application of Intrinsically Conducting Polymers in Flexible Electronics. SmartMat 2021, 2, 263–285. DOI: 10.1002/smm2.1059.
  • Prunet, G.; Pawula, F.; Fleury, G.; Cloutet, E.; Robinson, A. J.; Hadziioannou, G.; Pakdel, A. A Review on Conductive Polymers and Their Hybrids for Flexible and Wearable Thermoelectric Applications. Mater. Today Phys. 2021, 18, 100402.
  • Shi, Y.; Peng, L.; Ding, Y.; Zhao, Y.; Yu, G. Nanostructured Conductive Polymers for Advanced Energy Storage. Chem. Soc. Rev. 2015, 44, 6684–6696. DOI: 10.1039/c5cs00362h.
  • Tseghai, G. B.; Mengistie, D. A.; Malengier, B.; Fante, K. A.; Van Langenhove, L. PEDOT:PSS-Based Conductive Textiles and Their Applications. Sensors 2020, 20, 1881.
  • Kumar, R.; Singh, S.; Yadav, B. C. Conducting Polymers: Synthesis, Properties and Applications. Int. J. Adv. Res. Sci. Eng. Technol. 2015, 2, 110–124.
  • Swamy, N. K.; Sandeep, S.; Santhosh, A. S. Conductive Polymers and Their Nanohybrid Transducers for Electrochemical Biosensors Applications: A Brief Review. Ind. J. Adv. Chem. Sci. 2017, 6, 9.
  • Srilatha, S.; Jayaveera, K.; Madhavendhra, S. The Effect of Dopant, Temperature and Band Gap on Conductivity of Conducting Polymers. Int. J. Innov. Res. Sci. Eng. Technol. 2013, 2, 2694–2696.
  • Kumar, D.; Sharma, R. C. Advances in Conductive Polymers. Eur. Polym. J. 1998, 34, 1053–1060. DOI: 10.1016/S0014-3057(97)00204-8.
  • Shi, H.; Liu, C.; Jiang, Q.; Xu, J. Effective Approaches to Improve the Electrical Conductivity of PEDOT:PSS: A Review. Adv. Electron. Mater. 2015, 1, 1500017.
  • Zhu, T.; Ni, Y.; Biesold, G. M.; Cheng, Y.; Ge, M.; Li, H.; Huang, J.; Lin, Z.; Lai, Y. Recent Advances in Conductive Hydrogels: Classifications, Properties, and Applications. Chem. Soc. Rev. 2023, 52, 473–509. DOI: 10.1039/D2CS00173J.
  • Nayak, K.; De, P. Crosslinked Polymethacrylate Absorbent with Phenylalanine and Stearate Pendants. Crosslinked Polymethacrylate Absorbent with Phenylalanine and Stearate Pendants. J. Macromol. Sci. A: Pure Appl. Chem. 2022, 59, 863–871.
  • Chen, Z.; Chen, Y.; Hedenqvist, M. S.; Chen, C.; Cai, C.; Li, H.; Liu, H.; Fu, J. Multifunctional Conductive Hydrogels and Their Applications as Smart Wearable Devices. J. Mater. Chem. B 2021, 9, 2561–2583. DOI: 10.1039/d0tb02929g.
  • Segal, E.; Tchoudakov, R.; Harpaz, I. M.; Narkis, M.; Siegmann, A. Chemical Sensing Materials Based on Electrically-Conductive Immiscible Polymer Blends. Polym. Int. 2005, 54, 1065–1075.
  • Salehiyan, R.; Ray, S. S. Tuning the Conductivity of Nanocomposites through Nanoparticle Migration and Interface Crossing in Immiscible Polymer Blends: A Review on Fundamental Understanding. Macromol. Mater. Eng. 2019, 304, 1800431.
  • Sekitani, T.; Someya, T. Stretchable, Large-Area Organic Electronics. Adv. Mater. 2010, 22, 2228–2246.
  • Deka, N.; Bera, A.; Roy, D.; De, P. Methyl Methacrylate-Based Copolymers: Recent Developments in the Areas of Transparent and Stretchable Active Matrices. ACS Omega 2022, 7, 36929–36944.
  • Balasubramanian, K. B. N.; Ramesh, T. Role, Effect, and Influences of Micro and Nano-Fillers on Various Properties of Polymer Matrix Composites for Microelectronics: A Review. Polym. Adv. Technol. 2018, 29, 1568–1585.
  • Khan, S.; Lorenzelli, L. Recent Advances of Conductive Nanocomposites in Printed and Flexible Electronics. Smart Mater. Struct. 2017, 26, 083001. DOI: 10.1088/1361-665X/aa7373.
  • Das, P. P.; Chaudhary, V.; Ahmad, F.; Manral, A. Effect of Nanotoxicity and Enhancement in Performance of Polymer Composites Using Nanofillers: A State-of-the-Art Review. Polym. Compos. 2021, 42, 2152–2170. DOI: 10.1002/pc.25968.
  • Janghela, S.; Devi, S.; Kambo, N.; Roy, D.; Mukhopadhyay, K.; Prasad, N. E. Microphase Separation in Oriented Polymeric Chains at the Surface of Nanomaterials during Nanofiber Formation. Soft Matter 2019, 15, 6811–6818. DOI: 10.1039/c9sm01250h.
  • McGlasson, A.; Rishi, K.; Beaucage, G.; Chauby, M.; Kuppa, V.; Ilavsky, J.; Rackaitis, M. Quantification of Dispersion for Weakly and Strongly Correlated Nanofillers in Polymer Nanocomposites. Macromolecules 2020, 53, 2235–2248.
  • Bhattacharyya, R.; Janghela, S.; Saraiya, A.; Roy, D.; Mukhopadhyay, K.; Prasad, N. E. Effect of Reinforcement at Length Scale for Polyurethane Cellular Scaffolds by Supramolecular Assemblies. J. Phys. Chem. B 2018, 122, 2683–2693. DOI: 10.1021/acs.jpcb.7b11978.
  • Lavagna, L.; Nisticò, R.; Musso, S.; Pavese, M. F. Functionalization as a Way to Enhance Dispersion of Carbon Nanotubes in Matrices: A Review. Mater. Today Chem. 2021, 20, 100477. DOI: 10.1016/j.mtchem.2021.100477.
  • Yu, S.; Shen, X.; Kim, J. K. Beyond Homogeneous Dispersion: Oriented Conductive Fillers for High κ Nanocomposites. Mater. Horiz. 2021, 8, 3009–3042. DOI: 10.1039/d1mh00907a.
  • Setua, D. K.; Mordina, B.; Srivastava, A. K.; Roy, D.; Prasad, N. E. Carbon Nanofibers-Reinforced Polymer Nanocomposites as Efficient Microwave Absorber. Micro and Nano Technologies. In Fiber-Reinforced Nanocomposites: Fundamentals and Applications; Han, B., Sharma, S., Nguyen, TA., Longbiao, L., Bhat, S.K., Eds.; Elsevier: Singapore, 2020; pp. 395–430.
  • Sharma, S.; Verma, A.; Rangappa, S. V.; Siengchin, S.; Ogata, S. Recent Progressive Developments in Conductive-Fillers Based Polymer Nanocomposites (CFPNC’s) and Conducting Polymeric Nanocomposites (CPNC’s) for Multifaceted Sensing Applications. J. Mater. Res. Technol. 2023, 26, 5921–5974. DOI: 10.1016/j.jmrt.2023.08.300.
  • Peng, S.; Yu, Y.; Wu, S.; Wang, C. H. Conductive Polymer Nanocomposites for Stretchable Electronics: Material Selection, Design, and Applications. ACS Appl. Mater. Interfaces 2021, 13, 43831–43854. DOI: 10.1021/acsami.1c15014.
  • Roy, D.; Vaishnav, B.; Vayalil, S. K.; Gupta, A.; Prasad, N. E.; Sochor, B.; Schwartzkopf, M.; Roth, S. V.; Kraus, T. In Situ Study of Structure Formation under Stress in Stretchable Conducting Nanocomposites. J. Phys. Chem. Lett. 2023, 14, 5834–5840. DOI: 10.1021/acs.jpclett.3c00929.
  • Lin, J. C.; Liatsis, P.; Alexandridis, P. Flexible and Stretchable Electrically Conductive Polymer Materials for Physical Sensing Applications. Polym. Rev. 2023, 63, 67–126. DOI: 10.1080/15583724.2022.2059673.
  • Chen, H.; Zhuo, F.; Zhou, J.; Liu, Y.; Zhang, J.; Dong, S.; Liu, X.; Elmarakbi, A.; Duan, H.; Fu, Y. Advances in Graphene-Based Flexible and Wearable Strain Sensors. Chem. Eng. J. 2023, 464, 142576.
  • Kumar, S.; Arumugham, H.; Roy, D.; Kannaiyan, D. Synthesis and Characterization of Fluorine Functionalized Graphene Oxide Dispersed Quinoline-Based Polyimide Composites Having Low-k and UV Shielding Properties. Polym. Adv. Technol. 2022, 33, 427–439.
  • Sun, X.; Huang, C.; Wang, L.; Liang, L.; Cheng, Y.; Fei, W.; Li, Y. Recent Progress in Graphene/Polymer Nanocomposites. Adv. Mater. 2021, 33, 2001105.
  • Raya, C. C.; Denchev, Z. Z.; Cruz, S. F.; Viana, J. C. Chemistry of Solid Metal-Based Inks and Pastes for Printed Electronics – A Review. Appl. Mater. Today 2019, 15, 416–430.
  • Park, M.; Park, J.; Jeong, U. Design of Conductive Composite Elastomers for Stretchable Electronics. Nano Today 2014, 9, 244–260. DOI: 10.1016/j.nantod.2014.04.009.
  • Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; Smalley, R. E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163. DOI: 10.1038/318162a0.
  • De Jong, K. P.; Geus, J. W. Carbon Nanofibers: Catalytic Synthesis and Applications. Catal. Rev. 2000, 42, 481–510.
  • Iijima, S.; Ichihashi, T. Single-Shell Carbon Nanotubes of 1-nm Diameter. Nature 1993, 363, 603–605. DOI: 10.1038/363603a0.
  • Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991, 354, 56–58. DOI: 10.1038/354056a0.
  • Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field in Atomically Thin Carbon Films. Science 2004, 306, 666–669. DOI: 10.1126/science.1102896.
  • Thompson, D. Michael Faraday’s Recognition of Ruby Gold: The Birth of Modern Nanotechnology. Gold Bull. 2007, 40, 267–269.
  • Nowack, B.; Krug, H. F.; Height, M. 120 Years of Nanosilver History: Implications for Policy Makers. Environ. Sci. Technol. 2011, 45, 1177–1183. DOI: 10.1021/es103316q.
  • Ivanova, I. A.; Daskalova, D. S.; Yordanova, L. P.; Pavlova, E. L. Copper and Copper Nanoparticles Applications and Their Role against Infections: A Minireview. Processes 2024, 12, 352. DOI: 10.3390/pr12020352.
  • Bayda, S.; Adeel, M.; Tuccinardi, T.; Cordani, M.; Rizzolio, F. The History of Nanoscience and Nanotechnology: From Chemical-Physical Applications to Nanomedicine. Molecules 2019, 25, 112. DOI: 10.3390/molecules25010112.
  • Saborio, M. G.; Cai, S.; Tang, J.; Ghasemian, M. B.; Mayyas, M.; Han, J.; Christoe, M. J.; Peng, S.; Koshy, P.; Esrafilzadeh, D.; et al. Liquid Metal Droplet and Graphene Co-Fillers for Electrically Conductive Flexible Composites. Small 2020, 16, 1903753. DOI: 10.1002/smll.201903753.
  • Wang, C.; Gong, Y.; Cunning, B. V.; Lee, S.; Quan, L.; Joshi, S. R.; Buyukcakir, O.; Zhang, H.; Seong, W. K.; Huang, M.; et al. A General Approach to Composites Containing Nonmetallic Fillers and Liquid Gallium. Sci. Adv. 2021, 7, 3767. DOI: 10.1126/sciadv.abe3767.
  • Uyor, U. O.; Popoola, P. A. I.; Popoola, O. M. Network Structural Hardening of Polypropylene Matrix Using Hybrid of 0D, 1D and 2D Carbon-Ceramic Nanoparticles with Enhanced Mechanical and Thermomechanical Properties. J. Polym. Eng. 2022, 42, 520–534. DOI: 10.1515/polyeng-2021-0216.
  • Mandal, S.; Roy, D.; Prasad, N. E.; Joshi, M. Interfacial Interactions and Properties of Cellular Structured Polyurethane Nanocomposite Based on Carbonaceous Nano-Fillers. J. Appl. Polym. Sci. 2021, 138, 49775.
  • Bailey, E. J.; Winey, K. I. Dynamics of Polymer Segments, Polymer Chains, and Nanoparticles in Polymer Nanocomposite Melts: A Review. Prog. Polym. Sci. 2020, 105, 101242. DOI: 10.1016/j.progpolymsci.2020.101242.
  • Dey, A.; Haldar, U.; Tota, R.; Faust, R.; De, P. PIB-Based Block Copolymer with a Segment Having Alternating Sequence of Leucine and Alanine Side-Chain Pendants. J. Macromol. Sci. A: Pure Appl. Chem. 2023, 60, 161–170.
  • Zheng, Y.; Zhang, S.; Tok, J. B.-H.; Bao, Z. Molecular Design of Stretchable Polymer Semiconductors: Current Progress and Future Directions. J. Am. Chem. Soc. 2022, 144, 4699–4715. DOI: 10.1021/jacs.2c00072.
  • Deka, N.; Bera, A.; Roy, D.; De, P. Unravelling the Role of Counter Anions on Optical and Microwave Absorption Characteristics of Flexible Copolymers. Polymer 2023, 282, 126158. DOI: 10.1016/j.polymer.2023.126158.
  • Zhang, Y.; Shi, G.; Qin, J.; Lowe, S. E.; Zhang, S.; Zhao, H.; Zhong, Y. L. Recent Progress of Direct Ink Writing of Electronic Components for Advanced Wearable Devices. ACS Appl. Electron. Mater. 2019, 1, 1718–1734. DOI: 10.1021/acsaelm.9b00428.
  • Dimitriou, E.; Michailidis, N. Printable Conductive Inks Used for the Fabrication of Electronics: An Overview. Nanotechnology 2021, 32, 502009. DOI: 10.1088/1361-6528/abefff.
  • Swami, M.; a,bShanu Prabhakar, S.; Ghosh, S.; Roy, D. Direct Printing of Graphene Based Inks on Textile Surface: A Quest towards Long-Term-Cyclic Stability of Stretchable Polymeric Film for Wearable Technologies. Adv. Eng. Mater. (Communicated).
  • Liu, L.; Shen, Z.; Zhang, X.; Ma, H. Highly Conductive Graphene/Carbon Black Screen-Printing Inks for Flexible Electronics. J. Colloid Interface Sci. 2021, 582, 12–21.
  • Zhao, Z.; Fu, H.; Tang, R.; Bocheng, Z.; Yunmin, C.; Jianqun, J. Failure Mechanisms in Flexible Electronics. Int. J. Smart Nano Mater. 2023, 14, 510–565.
  • Root, S. E.; Savagatrup, S.; Printz, A. D.; Rodriquez, D.; Lipomi, D. J. Mechanical Properties of Organic Semiconductors for Stretchable, Highly Flexible, and Mechanically Robust Electronics. Chem. Rev. 2017, 117, 6467–6499. DOI: 10.1021/acs.chemrev.7b00003.
  • Roy, D.; Vaishnav, B.; Mandal, S.; Vayalil, S. K.; Gupta, A.; Sochor, B.; Kraus, T. Understanding the Mechanism of Fractal Formation by Matrix-Nanofillers Interactions for Enduring Conducting Networks in Soft Materials. Nanoscale (Communicated).
  • Coupette, F.; Zhang, L.; Kuttich, B.; Chumakov, A.; Roth, S. V.; García, L. G.; Kraus, T.; Schilling, T. Percolation of Rigid Fractal Carbon Black Aggregates. J. Chem. Phys. 2021, 155, 124902. DOI: 10.1063/5.0058503.
  • Sun, C. H.; Li, F.; Ying, Z.; Liu, C.; Cheng, H. M. Surface Fractal Dimension of Single-Walled Carbon Nanotubes. Phys. Rev. B 2004, 69, 033404. DOI: 10.1103/PhysRevB.69.033404.
  • Pan, J.; Bian, L. Influence of Agglomeration Parameters on Carbon Nanotube Composites. Acta Mech. 2017, 228, 2207–2217. DOI: 10.1007/s00707-017-1820-9.
  • Hu, H.; Ma, Y.; Yue, J.; Zhang, F. Porous GNP/PDMS Composites with Significantly Reduced Percolation Threshold of Conductive Filler for Stretchable Strain Sensors. Compos. Commun. 2022, 29, 101033. DOI: 10.1016/j.coco.2021.101033.
  • Kazemi, Y.; Kakroodi, A. R.; Mark, L. H.; Filleter, T.; Park, C. B. Effects of Polymer-Filler Interactions on Controlling the Conductive Network Formation in Polyamide 6/multi-Walled Carbon Nanotube Composites. Polymer 2019, 178, 121684. DOI: 10.1016/j.polymer.2019.121684.
  • Kwon, S.; Cho, H. W.; Gwon, G.; Kim, H.; Sung, B. J. Effects of Shape and Flexibility of Conductive Fillers in Nanocomposites on Percolating Network Formation and Electrical Conductivity. Phys. Rev. E 2016, 93, 032501. DOI: 10.1103/PhysRevE.93.032501.
  • Cao, J.; Zhang, X. Modulating the Percolation Network of Polymer Nanocomposites for Flexible Sensors. J. Appl. Phys. 2020, 128, 220901.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.