60
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Tough and conductive double-network hydrogel based on PVA/poly(ionic liquids) strengthened by metal ion complexation for flexible sensors

, , , &
Received 10 Apr 2024, Accepted 08 Jun 2024, Published online: 18 Jun 2024

References

  • Zhou, Y.; Wan, C.; Yang, Y.; Yang, H.; Wang, S.; Dai, Z.; Ji, K.; Jiang, H.; Chen, X.; Long, Y.; et al. Highly Stretchable, Elastic, and Ionic Conductive Hydrogel for Artificial Soft Electronics. Adv. Funct. Mater. 2018, 29, 1806220. DOI: 10.1002/adfm.201806220.
  • Liu, X.; Ren, Z.; Liu, F.; Zhao, L.; Ling, Q.; Gu, H. Multifunctional Self-Healing Dual Network Hydrogels Constructed via Host–Guest Interaction and Dynamic Covalent Bond as Wearable Strain Sensors for Monitoring Human and Organ Motions. ACS Appl. Mater. Interfaces 2021, 13, 14612–14622. DOI: 10.1021/acsami.1c03213.
  • Sun, H.; Wang, S.; Yang, F.; Tan, M.; Bai, L.; Wang, P.; Feng, Y.; Liu, W.; Wang, R.; He, X.; et al. Conductive and Antibacterial Dual-Network Hydrogel for Soft Bioelectronics. Mater. Horiz. 2023, 10, 5805–5821. DOI: 10.1039/d3mh00813d.
  • Liu, C.; Xu, Z.; Chandrasekaran, S.; Liu, Y.; Wu, M. Self-Healing, Antibacterial, and Conductive Double Network Hydrogel for Strain Sensors. Carbohydr. Polym. 2023, 303, 120468. DOI: 10.1016/j.carbpol.2022.120468.
  • Zhang, W.; Feng, P.; Chen, J.; Sun, Z.; Zhao, B. Electrically Conductive Hydrogels for Flexible Energy Storage Systems. Prog. Polym. Sci. 2019, 88, 220–240. DOI: 10.1016/j.progpolymsci.2018.09.001.
  • Yang, B. W.; Yuan, W. Highly Stretchable and Transparent Double-Network Hydrogel Ionic Conductors as Flexible Thermal-Mechanical Dual Sensors and Electroluminescent Devices. ACS Appl. Mater. Interfaces. 2019, 11, 16765–16775. DOI: 10.1021/acsami.9b01989.
  • Ni, Q.-Y.; He, X.-F.; Zhou, J.-L.; Yang, Y.-Q.; Zeng, Z.-F.; Mao, P.-F.; Luo, Y.-H.; Xu, J.-M.; Jiang, B.; Wu, Q.; et al. Mechanical Tough and Stretchable Quaternized Cellulose Nanofibrils/MXene Conductive Hydrogel for Flexible Strain Sensor with Multi-Scale Monitoring. J. Mater. Sci. Technol. 2024, 191, 181–191. DOI: 10.1016/j.jmst.2023.12.048.
  • Shen, K.; Xu, K.; Zhang, M.; Yu, J.; Yang, Y.; Zhao, X.; Zhang, Q.; Wu, Y.; Zhang, Y.; Cheng, Y.; et al. Multiple Hydrogen Bonds Reinforced Conductive Hydrogels with Robust Elasticity and Ultra-Durability as Multifunctional Ionic Skins. Chem. Eng. J. 2023, 451, 138525. DOI: 10.1016/j.cej.2022.138525.
  • Li, Q.; Tian, B.; Liang, J.; Wu, W. Functional Conductive Hydrogels: From Performance to Flexible Sensor Applications. Mater. Chem. Front. 2023, 7, 2925–2957. DOI: 10.1039/D3QM00109A.
  • Zhang, J.; Wan, L.; Gao, Y.; Fang, X.; Lu, T.; Pan, L.; Xuan, F. Highly Stretchable and Self-Healable MXene/Polyvinyl Alcohol Hydrogel Electrode for Wearable Capacitive Electronic Skin. Adv. Elect. Mater. 2019, 5, 1900285. DOI: 10.1002/aelm.201900285.
  • Sun, X.; Qin, Z.; Ye, L.; Zhang, H.; Yu, Q.; Wu, X.; Li, J.; Yao, F. Carbon Nanotubes Reinforced Hydrogel as Flexible Strain Sensor with High Stretchability and Mechanically Toughness. Chem. Eng. J. 2020, 382, 122832. DOI: 10.1016/j.cej.2019.122832.
  • Zhang, X.; Xiang, J.; Hong, Y.; Shen, L. Recent Advances in Design Strategies of Tough Hydrogels. Macromol. Rapid Commun. 2022, 43, e2200075. DOI: 10.1002/marc.202200075.
  • Lin, X.; Zhao, X.; Xu, C.; Wang, L.; Xia, Y. Progress in the Mechanical Enhancement of Hydrogels: Fabrication Strategies and Underlying Mechanisms. J. Polym. Sci. 2022, 60, 2525–2542. DOI: 10.1002/pol.20220154.
  • Gong, J. P. Why Are Double Network Hydrogels So Tough? Soft Matter 2010, 6, 2583–2590. DOI: 10.1039/b924290b.
  • Zhao, X.; Chen, X.; Yuk, H.; Lin, S.; Liu, X.; Parada, G. Soft Materials by Design: Unconventional Polymer Networks Give Extreme Properties. Chem. Rev. 2021, 121, 4309–4372. DOI: 10.1021/acs.chemrev.0c01088.
  • Yang, J.; Kang, Q.; Zhang, B.; Fang, X.; Liu, S.; Qin, G.; Chen, Q. Strong, Tough, Anti-Freezing, Non-Drying and Sensitive Ionic Sensor Based on Fully Physical Cross-Linked Double Network Hydrogel. Mater. Sci. Eng. C 2021, 130, 112452. DOI: 10.1016/j.msec.2021.112452.
  • Adelnia, H.; Ensandoost, R.; Shebbrin Moonshi, S.; Gavgani, J. N.; Vasafi, E. I.; Ta, H. T. Freeze/Thawed Polyvinyl Alcohol Hydrogels: Present, Past and Future. Eur. Polym. J. 2022, 164, 110974. DOI: 10.1016/j.eurpolymj.2021.110974.
  • Wang, T.; Wang, J.; Li, Z.; Yue, M.; Qing, X.; Zhang, P.; Liao, X.; Fan, Z.; Yang, S. PVA/SA/MXene Dual‐Network Conductive Hydrogel for Wearable Sensor to Monitor Human Motions. J. Appl. Polym. Sci. 2021, 139, e51627. DOI: 10.1002/app.51627.
  • Chen, G.; Huang, J.; Gu, J.; Peng, S.; Xiang, X.; Chen, K.; Yang, X.; Guan, L.; Jiang, X.; Hou, L.; et al. Highly Tough Supramolecular Double Network Hydrogel Electrolytes for an Artificial Flexible and Low-Temperature Tolerant Sensor. J. Mater. Chem. A 2020, 8, 6776–6784. DOI: 10.1039/D0TA00002G.
  • Li, S.; Li, Y.; Wang, Y.; Pan, H.; Sun, J. Highly Stretchable, Elastic, Healable, and Ultra-Durable Polyvinyl Alcohol-Based Ionic Conductors Capable of Safe Disposal. CCS Chem. 2022, 4, 3170–3180. DOI: 10.31635/ccschem.021.202101360.
  • Fu, D.; Huang, G.; Xie, Y.; Zheng, M.; Feng, J.; Kan, K.; Shen, J. Novel Uracil-Functionalized Poly(Ionic Liquid) Hydrogel: Highly Stretchable and Sensitive as a Direct Wearable Ionic Skin for Human Motion Detection. ACS Appl. Mater. Interfaces. 2023, 15, 11062–11075. DOI: 10.1021/acsami.2c21819.
  • Fan, X.; Zhao, L.; Ling, Q.; Gu, H. Tough, Self-Adhesive, Antibacterial, and Recyclable Supramolecular Double Network Flexible Hydrogel Sensor Based on PVA/Chitosan/Cyclodextrin. Ind. Eng. Chem. Res. 2022, 61, 3620–3635. DOI: 10.1021/acs.iecr.1c04997.
  • Fan, X.; Geng, J.; Wang, Y.; Gu, H. PVA/Gelatin/β-CD-Based Rapid Self-Healing Supramolecular Dual-Network Conductive Hydrogel as Bidirectional Strain Sensor. Polymer 2022, 246, 124769. DOI: 10.1016/j.polymer.2022.124769.
  • Cao, X.; He, T.; Sui, J.; Yan, Y.; Liu, X.; Liu, L.; Lv, S. PVA/KGM Dual Network Hydrogels Doped with Carbon Nanotube-Collagen Corona as Flexible Sensors for Human Motion Monitoring. J. Mater. Chem. C 2024, 12, 3333–3344. DOI: 10.1039/D3TC04479C.
  • Zhang, X.; Sheng, N.; Wang, L.; Tan, Y.; Liu, C.; Xia, Y.; Nie, Z.; Sui, K. Supramolecular Nanofibrillar Hydrogels as Highly Stretchable, Elastic and Sensitive Ionic Sensors. Mater. Horiz. 2019, 6, 326–333. DOI: 10.1039/C8MH01188E.
  • Chen, S.; Huang, J.; Zhou, Z.; Chen, Q.; Hong, M.; Yang, S.; Heqing, F. Highly Elastic anti-Fatigue and anti-Freezing Conductive Double Network Hydrogel for Human Body Sensors. Ind. Eng. Chem. Res. 2021. 60(17): 6162–6172. DOI: 10.1021/acs.iecr.1c00610.
  • Eftekhari, A.; Saito, T. Synthesis and Properties of Polymerized Ionic Liquids. Eur. Polym. J. 2017, 90, 245–272. DOI: 10.1016/j.eurpolymj.2017.03.033.
  • Huang, Y.; Xiao, L.; Zhou, J.; Liu, T.; Yan, Y.; Long, S.; Li, X. Strong Tough Polyampholyte Hydrogels via the Synergistic Effect of Ionic and Metal–Ligand Bonds. Adv. Funct. Mater. 2021, 31, 2103917. DOI: 10.1002/adfm.202103917.
  • Ming, X.; Sheng, Y.; Yao, L.; Li, X.; Huang, Y.; Zhu, H.; Zhang, Q.; Zhu, S. Anti-Swelling Conductive Polyampholyte Hydrogels via Ionic Complexations for Underwater Motion Sensors and Dynamic Information Storage. Chem. Eng. J. 2023, 463, 142439. DOI: 10.1016/j.cej.2023.142439.
  • Fang, H.; Wang, J.; Li, L.; Xu, L.; Wu, Y.; Wang, Y.; Fei, X.; Tian, J.; Li, Y. A Novel High-Strength Poly(Ionic Liquid)/PVA Hydrogel Dressing for Antibacterial Applications. Chem. Eng. J. 2019, 365, 153–164. DOI: 10.1016/j.cej.2019.02.030.
  • Ding, H.; Xu, S.; Wang, J.; Fan, Z.; Huang, Z.; Wu, H.; Pi, P.; Cheng, J.; Wen, X. A Conductive, Antibacterial, and Antifouling Hydrogel Based on Zwitterion. J. Appl. Polym. Sci. 2021, 139, e51648. DOI: 10.1002/app.51648.
  • Al-Sodies, S.; Asiri, A. M.; Khan, A.; Alamry, K. A.; Hussein, M. A. Recent Exploiting of Poly(Ionic Liquid)s in Sensing Applications. Eur. Polym. J. 2024, 205, 112719. DOI: 10.1016/j.eurpolymj.2023.112719.
  • Lin, P.; Ma, S.; Wang, X.; Zhou, F. Molecularly Engineered Dual‐Crosslinked Hydrogel with Ultrahigh Mechanical Strength, Toughness, and Good Self‐Recovery. Adv. Mater. 2015, 27, 2054–2059. DOI: 10.1002/adma.201405022.
  • Jing, X.; Mi, H.-Y.; Peng, X.-F.; Turng, L.-S. Biocompatible, Self-Healing, Highly Stretchable Polyacrylic Acid/Reduced Graphene Oxide Nanocomposite Hydrogel Sensors via Mussel-Inspired Chemistry. Carbon 2018, 136, 63–72. DOI: 10.1016/j.carbon.2018.04.065.
  • Liu, X.-Y.; Xu, H.; Zhang, L.-Q.; Zhong, M.; Xie, X.-M. Homogeneous and Real Super Tough Multi-Bond Network Hydrogels Created through a Controllable Metal Ion Permeation Strategy. ACS Appl. Mater. Interfaces 2019, 11, 42856–42864. DOI: 10.1021/acsami.9b18620.
  • Liu, H.; Wang, X.; Cao, Y.; Yang, Y.; Yang, Y.; Gao, Y.; Ma, Z.; Wang, J.; Wang, W.; Wu, D.; et al. Freezing-Tolerant, Highly Sensitive Strain and Pressure Sensors Assembled from Ionic Conductive Hydrogels with Dynamic Cross-Links. ACS Appl. Mater. Interfaces 2020, 12, 25334–25344. DOI: 10.1021/acsami.0c06067.
  • Li, S.; Pan, H.; Wang, Y.; Sun, J. Polyelectrolyte Complex-Based Self-Healing, Fatigue-Resistant and Anti-Freezing Hydrogels as Highly Sensitive Ionic Skins. J. Mater. Chem. A 2020, 8, 3667–3675. DOI: 10.1039/C9TA13213A.
  • Li, D.; Li, J.; Mao, D.; Wen, H.; Zhou, Y.; Wang, J. Direct Synthesis of Sulfonic Group Tethered Mesoporous Poly(Ionic Liquid) for Catalyzing Deoximation Reactions. Mater. Chem. Phys. 2017, 189, 118–126. DOI: 10.1016/j.matchemphys.2016.12.067.
  • Zhou, X.; Li, C.; Zhu, L.; Zhou, X. Engineering Hydrogels by Soaking: From Mechanical Strengthening to Environmental Adaptation. Chem. Commun. 2020, 56, 13731–13747. DOI: 10.1039/D0CC05130F.
  • Zhang, X.; Tang, Y.; Wang, P.; Wang, Y.; Wu, T.; Li, T.; Huang, S.; Zhang, J.; Wang, H.; Ma, S.; et al. A Review of Recent Advances in Metal Ion Hydrogels: Mechanism, Properties and Their Biological Applications. New J. Chem. 2022, 46, 13838–13855. DOI: 10.1039/D2NJ02843C.
  • Cui, C.; Shao, C.; Meng, L.; Yang, J. High-Strength, Self-Adhesive, and Strain-Sensitive Chitosan/Poly(Acrylic Acid) Double-Network Nanocomposite Hydrogels Fabricated by Salt-Soaking Strategy for Flexible Sensors. ACS Appl. Mater. Interfaces 2019, 11, 39228–39237. DOI: 10.1021/acsami.9b15817.
  • Ye, Y.; Zhang, Y.; Chen, Y.; Han, X.; Jiang, F. Cellulose Nanofibrils Enhanced, Strong, Stretchable, Freezing‐Tolerant Ionic Conductive Organohydrogel for Multi‐Functional Sensors. Adv. Funct. Mater. 2020, 30, 2003430. DOI: 10.1002/adfm.202003430.
  • He, Z. R.; Yuan, W. Z. Adhesive, Stretchable, and Transparent Organohydrogels for Antifreezing, Antidrying, and Sensitive Ionic Skins. ACS Appl. Mater. Interfaces 2021, 13, 1474–1485.
  • Li, Z.; Yin, F.; He, W.; Hang, T.; Li, Z.; Zheng, J.; Li, X.; Jiang, S.; Chen, Y. Anti-Freezing, Recoverable and Transparent Conductive Hydrogels co-Reinforced by Ethylene Glycol as Flexible Sensors for Human Motion Monitoring. Int. J. Biol. Macromol. 2023, 230, 123117. DOI: 10.1016/j.ijbiomac.2022.123117.
  • Zhang, Y.; Li, S.; Gao, Z.; Bi, D.; Qu, N.; Huang, S.; Zhao, X.; Li, R. Highly Conductive and Tough Polyacrylamide/Sodium Alginate Hydrogel with Uniformly Distributed Polypyrrole Nanospheres for Wearable Strain Sensors. Carbohydr. Polym. 2023, 315, 120953. DOI: 10.1016/j.carbpol.2023.120953.
  • Zheng, H. Y.; et al. Self-Healing, Self-Adhesive Silk Fibroin Conductive Hydrogel as a Flexible Strain Sensor. ACS Appl. Mater. Interfaces 2021, 13, 40013–40031.
  • He, X. F.; et al. Mechanical Robust and Highly Conductive Composite Hydrogel Reinforced by a Combination of Cellulose Nanofibrils/Polypyrrole toward High-Performance Strain Sensor. Compos. B Eng. 2023, 266, 111022.
  • Pang, Q.; et al. Temperature-Responsive Ionic Conductive Hydrogel for Strain and Temperature Sensors. ACS Appl. Mater. Interfaces 2022, 14, 26536–26547.
  • Sun, X.; Liang, Y.; Ye, L.; Liang, H. An Extremely Tough and Ionic Conductive Natural-Polymer-Based Double Network Hydrogel. J. Mater. Chem. B 2021, 9, 7751–7759. DOI: 10.1039/D1TB01458G.
  • Li, B.; et al. A Highly Stretchable, Super-Hydrophobic Strain Sensor Based on Polydopamine and Graphene Reinforced Nanofiber Composite for Human Motion Monitoring. Compos. B Eng. 2020, 181, 107580.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.