26
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Sulfonate-bridged semi-biopolyamide for Pb(II) electrochemical probing and dye adsorption

, , , , , & show all
Received 22 May 2024, Accepted 01 Jul 2024, Published online: 12 Jul 2024

References

  • Chowdhary, P.; Raj, A.; Bharagava, R. N. Environmental Pollution and Health Hazards from Distillery Wastewater and Treatment Approaches to Combat the Environmental Threats: A Review. Chemosphere 2018, 194, 229–246. DOI: 10.1016/j.chemosphere.2017.11.163.
  • Fu, F.; Wang, Q. Removal of Heavy Metal Ions from Wastewaters: A Review. J. Environ. Manage. 2011, 92, 407–418. DOI: 10.1016/j.jenvman.2010.11.011.
  • Ramachandran, R.; Chen, T.-W.; Chen, S.-M.; Baskar, T.; Kannan, R.; Elumalai, P.; Raja, P.; Jeyapragasam, T.; Dinakaran, K.; Gnana Kumar, G. P. A Review of the Advanced Developments of Electrochemical Sensors for the Detection of Toxic and Bioactive Molecules. Inorg. Chem. Front. 2019, 6, 3418–3439. DOI: 10.1039/C9QI00602H.
  • Dolati, S.; Ramezani, M.; Abnous, K.; Taghdisi, S. M. Recent Nucleic Acid Based Biosensors for Pb2+ Detection. Sens. Actuators, B 2017, 246, 864–878. DOI: 10.1016/j.snb.2017.02.118.
  • Da-Col, J. A.; Domene, S. M. A.; Pereira-Filho, E. R. Fast Determination of Cd, Fe, Pb, and Zn in Food Using Aas. Food Anal. Methods 2009, 2, 110–115. DOI: 10.1007/s12161-008-9041-4.
  • Jia, L.-H.; Li, Y.; Li, Y.-Z. Determination of Wholesome Elements and Heavy Metals in Safflower (Carthamus Tinctorius L.) from Xinjiang and Henan by Icp-Ms/Icp-Aes. J. Pharm. Anal. 2011, 1, 100–103. DOI: 10.1016/S2095-1779(11)70017-X.
  • Wiltsche, H.; Wolfgang, M. Merits of Microwave Plasmas for Optical Emission Spectrometry – Characterization of an Axially Viewed Microwave-Sustained, Inductively Coupled, Atmospheric-Pressure Plasma (Micap). J. Anal. At. Spectrom. 2020, 35, 2369–2377. DOI: 10.1039/D0JA00293C.
  • Ma, C.; Ma, Z.; He, Z.; Wang, X.; Zhao, L.; Chen, X. A Hydrophilic Polymer Based on Alkoxyl Chain Modified Fluorene: The Novel Fluorescence Colorimetric Sensor for Fe3+, Fe2+, and Cu2+ in Aqueous Media. J. Macromol. Sci. Part A-Pure Appl. Chem. 2023, 60, 397–408. DOI: 10.1080/10601325.2023.2210165.
  • Zhu, Z.; Liu, J.; Zhang, S.; Na, X.; Zhang, X. Determination of Se, Pb, and Sb by Atomic Fluorescence Spectrometry Using a New Flameless, Dielectric Barrier Discharge Atomizer. Spectroc. Acta Pt. B-Atom. Spectr. 2008, 63, 431–436. DOI: 10.1016/j.sab.2007.12.008.
  • Dali, M.; Zinoubi, K.; Chrouda, A.; Abderrahmane, S.; Cherrad, S.; Jaffrezic-Renault, N. A Biosensor Based on Fungal Soil Biomass for Electrochemical Detection of Lead (II) and Cadmium (II) by Differential Pulse Anodic Stripping Voltammetry. J. Electroanal. Chem. 2018, 813, 9–19. DOI: 10.1016/j.jelechem.2018.02.009.
  • Isaac, A.; Davis, J.; Livingstone, C.; Wain, A. J.; Compton, R. G. Electroanalytical Methods for the Determination of Sulfite in Food and Beverages. TrAC Trends Anal. Chem. 2006, 25, 589–598. DOI: 10.1016/j.trac.2006.04.001.
  • İyim, T. B.; Acar, I.; Özgümüş, S. Removal of Basic Dyes from Aqueous Solutions with Sulfonated Phenol–Formaldehyde Resin. J. Appl. Polym. Sci. 2008, 109, 2774–2780. DOI: 10.1002/app.28260.
  • Robati, D.; Bagheriyan, S.; Rajabi, M.; Moradi, O.; Peyghan, A. A. Effect of Electrostatic Interaction on the Methylene Blue and Methyl Orange Adsorption by the Pristine and Functionalized Carbon Nanotubes. Physica E 2016, 83, 1–6. DOI: 10.1016/j.physe.2016.04.005.
  • Zou, J.; Liao, K.; Xiang, L.; Liu, M.; Xie, F.; Liu, X.; Yu, J.; An, X.; Wang, Y. Synthesis of Poly(Cyclotriphosphazene-Co-4,4'-Diaminodiphenysulfone) Microspheres and Their Adsorption Properties for Cationic Dyes (Methylene Blue). J. Inorg. Organomet. Polym. 2020, 30, 976–985. DOI: 10.1007/s10904-019-01235-8.
  • Benhalima, T.; Ferfera-Harrar, H.; Saha, N.; Saha, P. Fe3O4 Imbuing Carboxymethyl Cellulose/Dextran Sulfate Nanocomposite Hydrogel Beads: An Effective Adsorbent for Methylene Blue Dye Pollutant. J. Macromol. Sci. Part A-Pure Appl. Chem. 2023, 60, 442–461. DOI: 10.1080/10601325.2023.2212731.
  • Chen, H.; Zhou, Y.; Wang, J.; Lu, J.; Zhou, Y. Polydopamine Modified Cyclodextrin Polymer as Efficient Adsorbent for Removing Cationic Dyes and Cu2+. J. Hazard. Mater. 2020, 389, 121897. DOI: 10.1016/j.jhazmat.2019.121897.
  • Jabli, M.; Hamdaoui, M.; Marwa, R.; Ayed, A. H.; Hassine, B. B. Modified Polyamide 66 Fibers for the Removal of Reactive Dyes from Aqueous Suspension. Fibers Polym. 2014, 15, 1810–1821. DOI: 10.1007/s12221-014-1810-7.
  • Sukhinina, N. S.; Khodos, I. I.; Zver’kova, I. I.; Turanov, A. N.; Karandashev, V. K.; Emel’chenko, G. A. Structural Features and Sorption Properties of Mesoporous Carbon Material Prepared from Natural Shungite. Inorg. Mater. 2022, 58, 1114–1121. DOI: 10.1134/S0020168522100144.
  • Xiao, W.; Jiang, X.; Liu, X.; Zhou, W.; Garba, Z. N.; Lawan, I.; Wang, L.; Yuan, Z. Adsorption of Organic Dyes from Wastewater by Metal-Doped Porous Carbon Materials. J. Clean. Prod. 2021, 284, 124773. DOI: 10.1016/j.jclepro.2020.124773.
  • Zhang, W.; Zhang, L. Y.; Zhao, X. J.; Zhou, Z. Citrus Pectin Derived Porous Carbons as a Superior Adsorbent toward Removal of Methylene Blue. J. Solid State Chem. 2016, 243, 101–105. DOI: 10.1016/j.jssc.2016.08.014.
  • Dhaka, S.; Kumar, R.; Deep, A.; Kurade, M. B.; Ji, S.-W.; Jeon, B.-H. Metal–Organic Frameworks (Mofs) for the Removal of Emerging Contaminants from Aquatic Environments. Coord. Chem. Rev. 2019, 380, 330–352. DOI: 10.1016/j.ccr.2018.10.003.
  • Ding, S.; Shi, W.; Zhang, K.; Xie, Z. Bifunctional Cyclomatrix Polyphosphazene-Based Hybrid with Abundant Decorating Groups: Synthesis and Application as Efficient Electrochemical Pb(II) Probe and Methylene Blue Absorbent. J. Colloid Interface Sci. 2021, 587, 683–692. DOI: 10.1016/j.jcis.2020.11.028.
  • Liu, Y.; Lin, D.; Yang, W.; An, X.; Sun, A.; Fan, X.; Pan, Q. In Situ Modification of Zif-67 with Multi-Sulfonated Dyes for Great Enhanced Methylene Blue Adsorption Via Synergistic Effect. Microporous Mesoporous Mater. 2020, 303, 110304. DOI: 10.1016/j.micromeso.2020.110304.
  • Zhao, W.; Jiao, Y.; Gao, R.; Wu, L.; Cheng, S.; Zhuang, Q.; Xie, A.; Dong, W. Sulfonate-Grafted Conjugated Microporous Polymers for Fast Removal of Cationic Dyes from Water. Chem. Eng. J. 2020, 391, 123591. DOI: 10.1016/j.cej.2019.123591.
  • Bassyouni, D.; Mohamed, M.; El-Ashtoukhy, E.-S.; El-Latif, M. A.; Zaatout, A.; Hamad, H. Fabrication and Characterization of Electrospun Fe3O4/o-Mwcnts/Polyamide 6 Hybrid Nanofibrous Membrane Composite as an Efficient and Recoverable Adsorbent for Removal of Pb (II). Microchem. J. 2019, 149, 103998. DOI: 10.1016/j.microc.2019.103998.
  • Li, G.; Ye, J.; Fang, Q.; Liu, F. Amide-Based Covalent Organic Frameworks Materials for Efficient and Recyclable Removal of Heavy Metal Lead (II). Chem. Eng. J. 2019, 370, 822–830. DOI: 10.1016/j.cej.2019.03.260.
  • Ravikumar, L.; Kalaivani, S. S.; Murugesan, A.; Vidhyadevi, T.; Karthik, G.; Kirupha, S. D.; Sivanesan, S. Synthesis, Characterization, and Heavy Metal Ion Adsorption Studies of Polyamides, Polythioamides Having Pendent Chlorobenzylidine Rings. J. Appl. Polym. Sci. 2011, 122, 1634–1642. DOI: 10.1002/app.33968.
  • Wu, D.; Shi, W.; Ding, S.; Xie, Z. Diverse Functional Groups Decorated, Bifunctional Polyesteramide as Efficient Pb(II) Electrochemical Probe and Methylene Blue Adsorbent. Eur. Polym. J. 2021, 160, 110810. DOI: 10.1016/j.eurpolymj.2021.110810.
  • Dotto, G. L.; Santos, J. M. N.; Tanabe, E. H.; Bertuol, D. A.; Foletto, E. L.; Lima, E. C.; Pavan, F. A. Chitosan/Polyamide Nanofibers Prepared by Forcespinning® Technology: A New Adsorbent to Remove Anionic Dyes from Aqueous Solutions. J. Clean. Prod. 2017, 144, 120–129. DOI: 10.1016/j.jclepro.2017.01.004.
  • Saleh, T. A.; Ali, I. Synthesis of Polyamide Grafted Carbon Microspheres for Removal of Rhodamine B Dye and Heavy Metals. J. Environ. Chem. Eng. 2018, 6, 5361–5368. DOI: 10.1016/j.jece.2018.08.033.
  • Xia, Y.; Li, T.; Chen, J.; Cai, C. Polyaniline (Skin)/Polyamide 6 (Core) Composite Fiber: Preparation, Characterization and Application as a Dye Adsorbent. Synth. Met. 2013, 175, 163–169. DOI: 10.1016/j.synthmet.2013.05.012.
  • Zhang, J.; Shi, W.; Liu, Q.; Chen, T.; Zhou, X.; Yang, C.; Zhang, K.; Xie, Z. Atom-Economical, Room-Temperature, and High-Efficiency Synthesis of Polyamides Via a Three-Component Polymerization Involving Benzoxazines, Odorless Isocyanides, and Water. Polym. Chem. 2018, 9, 5566–5571. DOI: 10.1039/C8PY01256C.
  • Zhang, Q.; Shi, W.; Tan, W.; Xie, Z. Apigenin/Furfurylamine-Based Bio-Polyamide/Cyclophosphazene Composite: Preparation and Dual Applications in Dye Adsorption and Pb (II) Electrochemical Probing. Eur. Polym. J. 2022, 181, 111664. DOI: 10.1016/j.eurpolymj.2022.111664.
  • Sun, B.; Shi, W.; Zhang, Q.; Huang, K.; Zhu, Y.; Xie, Z. Diphenolic Acid/Furfurylamine-Based, Semi-Biopolyamide/Cyclophosphazene Covalent Composite: Preparation and Application in Pb(II) Probing and Dye Adsorption. J. Polym. Sci. 2024, 62, 2961–2974. DOI: 10.1002/pol.20240013.
  • Zhan, Z-m.; Yan, H-q.; Yin, P.; Cheng, J.; Fang, Z-p Synthesis and Properties of a Novel Bio-Based Benzoxazine Resin with Excellent Low-Temperature Curing Ability. Polym. Int. 2020, 69, 355–362. DOI: 10.1002/pi.5957.
  • Feng, Z. J.; Zeng, M.; Meng, D. W.; Chen, J. B.; Zhu, W. L.; Xu, Q. Y.; Wang, J. X. A Novel Bio-Based Benzoxazine Resin with Outstanding Thermal and Superhigh-Frequency Dielectric Properties. J. Mater. Sci. Mater. Electron. 2020, 31, 4364–4376. DOI: 10.1007/s10854-020-02995-7.
  • Qian, Z.; Zheng, Y.; Li, Q.; Wang, L.; Fu, F.; Liu, X. Amidation Way of Diphenolic Acid for Preparing Biopolybenzoxazine Resin with Outstanding Thermal Performance. ACS Sustain. Chem. Eng. 2021, 9, 4668–4680. DOI: 10.1021/acssuschemeng.1c00554.
  • Gao, B.; Fu, Q.; Su, L.; Yuan, C.; Zhang, X. Preparation and Electrochemical Properties of Polyaniline Doped with Benzenesulfonic Functionalized Multi-Walled Carbon Nanotubes. Electrochim. Acta 2010, 55, 2311–2318. DOI: 10.1016/j.electacta.2009.11.068.
  • Si, Y.; Samulski, E. T. Synthesis of Water Soluble Graphene. Nano Lett. 2008, 8, 1679–1682. DOI: 10.1021/nl080604h.
  • Sun, Y.; Zhang, J.; Yu, H.; Wang, J.; Huang, C.; Huang, J. Mechanism of Bifunctional P-Amino Benzenesulfonic Acid Modified Interface in Perovskite Solar Cells. Chem. Eng. J. 2021, 420, 129579. DOI: 10.1016/j.cej.2021.129579.
  • He, M.; Yuan, T.; Dong, W.; Li, P.; Jason Niu, Q.; Meng, J. High-Performance Acid-Stable Polysulfonamide Thin-Film Composite Membrane Prepared Via Spinning-Assist Multilayer Interfacial Polymerization. J. Mater. Sci. 2019, 54, 886–900. DOI: 10.1007/s10853-018-2847-6.
  • Iazykov, M.; Canle, M.; Santaballa, J. A.; Rublova, L. Propanolysis of Arenesulfonyl Chlorides: Nucleophilic Substitution at Sulfonyl Sulfur. J. Phys. Org. Chem. 2018, 31, e3753. DOI: 10.1002/poc.3753.
  • Yan, H.; Sun, C.; Fang, Z.; Liu, X.; Zhu, J.; Wang, H. Synthesis of an Intrinsically Flame Retardant Bio-Based Benzoxazine Resin. Polymer 2016, 97, 418–427. DOI: 10.1016/j.polymer.2016.05.053.
  • Sienkiewicz-Gromiuk, J.; Głuchowska, H.; Tarasiuk, B.; Mazur, L.; Rzączyńska, Z. Synthesis, Structural, Spectroscopic and Thermal Characteristics of Disubstituted Biphenyl Derivative: Biphenyl-4,4′-Diacetic Acid. J. Mol. Struct. 2014, 1070, 110–116. DOI: 10.1016/j.molstruc.2014.04.030.
  • Dai, C.; Sun, W.; Xu, Z.; Liu, J.; Chen, J.; Zhu, Z.; Li, L.; Zeng, H. Assembly of Ultralight Dual Network Graphene Aeael with Applications for Selective Oil Absorption. Langmuir 2020, 36, 13698–13707. DOI: 10.1021/acs.langmuir.0c02664.
  • Tan, W.; Shi, W.; Ding, S.; Xie, Z. Apigenin/Furfurylamine-Based Bio-Polyamide Derivative: Benzoxazine-Isocyanide Mechanochemistry Preparation and Application in Pb(II) Electrochemical Probing. React. Funct. Polym. 2021, 166, 104996. DOI: 10.1016/j.reactfunctpolym.2021.104996.
  • Zhang, J.; Shi, W.; Xu, K.; Xie, Z. Bioamide-Decorated Polyfluoreneisocyanide: Preparation from Benzoxazine-Isocyanide Mechanochemistry Postmodification and Application as an Active Modifier for Pb2+/No2– Electrochemical Probing. ACS Appl. Polym. Mater. 2023, 5, 5454–5465. DOI: 10.1021/acsapm.3c00794.
  • Lei, Y.; Shi, W.; Ding, S.; Sun, X.; Liu, S. In-Situ Benzoxazine-Isocyanide Chemistry (BIC)/Sol-Gel Preparation and Pb(II) Electrochemical Probing Investigation of Modified Polyamide/Silica Composite. Colloid Surf. A-Physicochem. Eng. Asp. 2022, 632, 127798. DOI: 10.1016/j.colsurfa.2021.127798.
  • Thomsen, V.; Schatzlein, D.; Mercuro, D. Limits of Detection in Spectroscopy. Spectroscopy 2003, 18, 112–114. DOI:
  • Pearson, R. G. Hard and Soft Acids and Bases. J. Am. Chem. Soc. 1963, 85, 3533–3539. DOI: 10.1021/ja00905a001.
  • Li, C.; Shi, W.; Wu, D.; Yang, M.; Xie, Z. Polythioamides from Multicomponent Benzoxazine-Isocyanide-Chemistry: Room Temperature Synthesis and Post-Polymerization to Construct Functional Polythioesteramide. Eur. Polym. J. 2023, 192, 112065. DOI: 10.1016/j.eurpolymj.2023.112065.
  • El-Sheikh, S. M.; Osman, D. I.; Ali, O. I.; Shousha, W. G.; Shoeib, M. A.; Shawky, S. M.; Sheta, S. M. A Novel Ag/Zn Bimetallic Mof as a Superior Sensitive Biosensing Platform for Hcv-Rna Electrochemical Detection. Appl. Surf. Sci. 2021, 562, 150202. DOI: 10.1016/j.apsusc.2021.150202.
  • Wan, J.; Shen, Y.; Xu, L.; Xu, R.; Zhang, J.; Sun, H.; Zhang, C.; Yin, C.; Wang, X. Ferrocene-Functionalized Ni(II)-Based Metal-Organic Framework as Electrochemical Sensing Interface for Ratiometric Analysis of Cu2+, Pb2+ and Cd2+. J. Electroanal. Chem. 2021, 895, 115374. DOI: 10.1016/j.jelechem.2021.115374.
  • Liu, P.; Dai, S.; Lan, J.; Lu, H.; Wang, B.; Zhu, Y. Corrosion Inhibition Mechanism of Imidazole Ionic Liquids with High Temperature in 20% Hcl Solution. J. Mol. Model. 2022, 29, 29. DOI: 10.1007/s00894-022-05436-w.
  • Deshmukh, S.; Kandasamy, G.; Upadhyay, R. K.; Bhattacharya, G.; Banerjee, D.; Maity, D.; Deshusses, M. A.; Roy, S. S. Terephthalic Acid Capped Iron Oxide Nanoparticles for Sensitive Electrochemical Detection of Heavy Metal Ions in Water. J. Electroanal. Chem. 2017, 788, 91–98. DOI: 10.1016/j.jelechem.2017.01.064.
  • Yu, L.; Zhang, Q.; Yang, B.; Xu, Q.; Xu, Q.; Hu, X. Electrochemical Sensor Construction Based on Nafion/Calcium Lignosulphonate Functionalized Porous Graphene Nanocomposite and Its Application for Simultaneous Detection of Trace Pb2+ and Cd2+. Sens. Actuators, B 2018, 259, 540–551. DOI: 10.1016/j.snb.2017.12.103.
  • Xu, T.; Dai, H.; Jin, Y. Electrochemical Sensing of Lead(II) by Differential Pulse Voltammetry Using Conductive Polypyrrole Nanoparticles. Mikrochim. Acta. 2019, 187, 23. DOI: 10.1007/s00604-019-4027-z.
  • Gao, F.; Gao, N.; Nishitani, A.; Tanaka, H. Rod-Like Hydroxyapatite and Nafion Nanocomposite as an Electrochemical Matrix for Simultaneous and Sensitive Detection of Hg2+, Cu2+, Pb2+ and Cd2+. J. Electroanal. Chem. 2016, 775, 212–218. DOI: 10.1016/j.jelechem.2016.05.032.
  • Akhtar, M.; Tahir, A.; Zulfiqar, S.; Hanif, F.; Warsi, M. F.; Agboola, P. O.; Shakir, I. Ternary Hybrid of Polyaniline-Alanine-Reduced Graphene Oxide for Electrochemical Sensing of Heavy Metal Ions. Synth. Met. 2020, 265, 116410. DOI: 10.1016/j.synthmet.2020.116410.
  • Buica, G.-O.; Lazar, I.-G.; Saint-Aman, E.; Tecuceanu, V.; Dumitriu, C.; Anton, I. A.; Stoian, A. B.; Ungureanu, E.-M. Ultrasensitive Modified Electrode Based on Poly(1h-Pyrrole-1-Hexanoic Acid) for Pb(II) Detection. Sens. Actuators, B 2017, 246, 434–443. DOI: 10.1016/j.snb.2017.02.112.
  • Saber-Samandari, S.; Saber-Samandari, S.; Joneidi-Yekta, H.; Mohseni, M. Adsorption of Anionic and Cationic Dyes from Aqueous Solution Using Gelatin-Based Magnetic Nanocomposite Beads Comprising Carboxylic Acid Functionalized Carbon Nanotube. Chem. Eng. J. 2017, 308, 1133–1144. DOI: 10.1016/j.cej.2016.10.017.
  • Wang, J.-H.; Zhang, Y.; An, L.-C.; Wang, W.-H.; Zhang, Y.-H.; Bu, X.-H. Sulfonated Hollow Covalent Organic Polymer: Highly-Selective Adsorption toward Cationic Organic Dyes over Anionic Ones in Aqueous Solution. Chin. J. Chem. 2018, 36, 826–830. DOI: 10.1002/cjoc.201800142.
  • Zarezadeh-Mehrizi, M.; Badiei, A.; Shahbazi, A. Sulfonate-Functionalized Nanoporous Silica Spheres as Adsorbent for Methylene Blue. Res. Chem. Intermed. 2016, 42, 3537–3551. DOI: 10.1007/s11164-015-2230-z.
  • Liu, Z.; Shi, W.; Lei, Y.; Xie, Z. Novel Polyamide/Silica/Chitosan Covalent Hybrid: One-Step Bic/Sol-Gel Preparation at Room Temperature and Dual Applications in Hg2+ Electrochemical Probing and Dye Adsorption. Carbohydr. Polym. 2023, 312, 120808. DOI: 10.1016/j.carbpol.2023.120808.
  • Wang, K.; Ding, W.; Luo, Q.; Ji, D.; Wang, L.; Wang, R.; Qin, X. Cleaner Dyeing Technology for Denim Fabrics with Excellent Utilization of Indigo Based on Inert Gas Protection. ACS Sustain. Chem. Eng. 2022, 10, 16009–16018. DOI: 10.1021/acssuschemeng.2c05504.
  • Li, M.; Zhao, H.; Lu, Z.-Y. Porphyrin-Based Porous Organic Polymer, Py-Pop, as a Multifunctional Platform for Efficient Selective Adsorption and Photocatalytic Degradation of Cationic Dyes. Microporous Mesoporous Mater. 2020, 292, 109774. DOI: 10.1016/j.micromeso.2019.109774.
  • Xu, H.; Liu, B.; Zhang, M. Preparation and Application of Monodisperse, Highly Cross-Linked, and Porous Polystyrene Microspheres for Dye Removal. Colloid Surf. A-Physicochem. Eng. Asp. 2022, 650, 129596. DOI: 10.1016/j.colsurfa.2022.129596.
  • Tian, L.; Zhou, S.; Zhao, J.; Xu, Q.; Li, N.; Chen, D.; Li, H.; He, J.; Lu, J. Sulfonate-Modified Calixarene-Based Porous Organic Polymers for Electrostatic Enhancement and Efficient Rapid Removal of Cationic Dyes in Water. J. Hazard. Mater. 2023, 441, 129873. DOI: 10.1016/j.jhazmat.2022.129873.
  • He, Y.; Guo, Z.; Chen, M.; Wan, S.; Peng, N.; Fu, X.; Yuan, D.; Na, B. Efficient Adsorption of Methyl Orange and Methylene Blue Dyes by a Novel Carbazole-Based Hyper-Crosslinked Porous Polymer. J. Porous Mater. 2023, 30, 1439–1448. DOI: 10.1007/s10934-023-01434-2.
  • Shen, Y.; Ni, W.-X.; Li, B. Porous Organic Polymer Synthesized by Green Diazo-Coupling Reaction for Adsorptive Removal of Methylene Blue. ACS Omega 2021, 6, 3202–3208. DOI: 10.1021/acsomega.0c05634.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.