37
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Challenges Facing Antitubercular Therapy: New Drugs and Delivery Systems

&
Pages 95-109 | Published online: 10 Oct 2008

REFERENCES

  • http://www.who.int/features/factfiles/tuberculosis/en/index.html
  • http://www.who.int/features/mediacentre/factsheets/fs104/en/index.html
  • Sheila SK, Paul HS, Prasanta C, Pryce LH, Hellen LC, Agnes KF, Richard DA, Stephen LG, John H, David GR. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 1994; 5147: 678–681
  • Ferrari G, Langen H, Naito M, Pieters J. A coat protein on phagosomes involved in the intracellular survival of mycobacteria. Cell 1999; 97: 435–447
  • Walburger A, Koul A, Ferrari G, Nguyen L, Baschong CP, Kris H, Klebel B, Thompson C, Gerald B, Pieters J. Protein kinase G from pathogenic mycobacteria promotes survival within macrophages. Sci 2004; 304: 1800–1804
  • Neu HC, Gootz TD. Antimicrobial chemotherapy. Medical microbiology, 4th, S Baron, RC Peake, DA James, M Susman, CA Kennedy, MJD Singleton, S Schuenke. The University of Texas Medical Branch at Galveston, Galveston, TX 1996; 121–145
  • Miller LP, Crawford J T, Shinnick T M. The rpo B gene of mycobacterium tuberculosis. Antimicrob Agents Chemother 1994; 38: 805–811
  • Caroline L, Maria G, Aina S, Helen BJ, Janet F. Molecular aharacterization of isoniazid-resistant Mycobacterium tuberculosis isolates collected in Australia. Antimicrob Agents Chemother. 2005; 49: 4068–4074
  • Sharma SK, Mohan A. Multidrug-resistant tuberculosis. A menace that threatens to destabilize tuberculosis control. Chest 2006; 130: 260–272
  • Singh S, Mariappan T, Sankar R, Sarda N, Baljinder S. A critical review of the probable reasons for the poor/variable bioavailability of rifampicin from anti-tubercular fixed-dose combination (FDC) products and the likely solutions to the problem. Int J Pharm 2001; 228: 5–17
  • Ramesh P, Shrutidevi A. Commentary biopharmaceutical and pharmacokinetic aspects of variable bioavailability of Rifampicin. Int J Pharm 2004; 271: 1–4
  • Prema G, Geetha R, Hemanth AK, Rajasekaran S, Padmapriyadarsini C, Soumya S, Bhagavathy S, Venkatesan L, Sekar A, Mahilmaran N, Ravichandran Paramesh P. Decreased bioavailability of rifampicin and other anti-tuberculosis drugs in patients with advanced human immunodeficiency virus disease. Antimicrob Agents Chemother 2004; 48: 4473–4475
  • Klemens SP, Cynamon MH. In-vivo activities of newer rifamycin analogs against mycobacterium avium infection. Antimicrob Agents Chemother 1991; 35: 2026–2030
  • Reynaldo D, Lucileia T, Liamarcia CR, Moises P, Johnson J L, Charles W, Lynn R, Kathleen E, Jerrold JE. Safety, bactericidal activity of Rifalazil in patients in pulmonary tuberculosis. Antimicrob Agents Chemother 2001; 45: 1972–1976
  • Dutt M, Khuller GK. Chemotherapy of Mycobacterium tuberculosis infections in mice with a combination of isoniazid and rifampicin entrapped in poly(DL-Lactic-CD-glycolide) nanoparticles, Antimicrob Agents chemother 2001; 47: 829–835
  • Klemens SP, Sharpe CA, Rogge MA, Cynamon MH. Activity of levofloxacin in murine model of tuberculosis. Antimicrob Agents Chemother 1994; 38: 1476–1479
  • Molnar J, Beladi I, Foldes I. Studies on antitubercular action of some phenothiazine derivatives in vitro. Zbl Bakt Hyg I Abt Orig. A. 1977; 239: 521–526
  • Crowle AJ, Douvas GS, May MH. Chlorpromazine: a drug potentially useful for treating mycobacterial infections. Chemotherappy 1992; 38: 410–419
  • Ratnakar P, Murthy P. Antitubercular activity of trifluoperazine: a calmodulin antagonist. FEMS Microbiol Lett 1992; 76: 73–76
  • Chakrabarty AN, Bhattacharya CP, Dastidar SG. Antimycobacterial activity of methdilazine (Md), an antimicrobial phenothiazine. Acta Pathol Microbiol Immunol Scand 1993; 101: 449–454
  • Amaral L, Kristiansen JE, Abebe LS, Millet W. Inhibition of the respiration of multi-drug resistant clinical isolates of Mycobacterium tuberculosis by thioridazine: potential use for initial therapy of freshly diagnosed tuberculosis. J Antimicrob Chemother 1996; 38: 1049–1053
  • Kristiansen JE. The antimicrobial activity of non-antibiotics. Acta Pathol Microbiol Scand 1992; 100: 7–19
  • Mazumdar R, Ganguly K, Dastidar SG, Chakrabarty AN. Trifluoperazine: a broad-spectrum bactericide specially active on staphylococci and vibrios. Int J Antimicrob Agents 2001; 18: 403–406
  • Molnár J, Mandi Y, Király J. Antibacterial effect of some phenothiazine compounds and the R-factor elimination by chlorpromazine. Acta Microbiol Acad Sci Hung 1976; 23: 45–54
  • Annadurai S, Basu S, Ray S, Dastidar SG, Chakrabarty AN. Antimicrobial activity of the antiinflammatory agent diclofenac sodium. Indian J Exp Biol 1998; 36: 86–90
  • Annadurai S, Guha-Thakurta A, Sa B, Dastidar SG, Ray R, Chakrabarty AN. Experimental studies on synergism between aminoglycosides and the antimicrobial anti-inflammatory agent diclofenac sodium. J Chemother 2002; 14: 47–53
  • Noton K, Sujata G D, Asok K, Kaushiki M, Raja R, Atindra N, Chakrabarty AN. Antimycobacterial activity of the anti-inflammatory agent diclofenac sodium and its synergism with streptomycin. Braz J Microbiol 2004; 35: 316–329
  • Jeanette WP, Pamela TT, David B, Amelia SLY, Mahesh N, Xinyi N, Jeyaraj D, Sarah L, Veronique D, Mark S, Samiul H, Michael C, Neil S R, Xia Y, Beat W, Kathryn B, Thomas D, Kakoli M. Peptide deformylase inhibitors as potent anti-mycobacterial agents. Antimicrob Agents Chemother 2006; 50: 3665–3673
  • Anthony JH, Minmin YU, Theres G, Martin M, Rochelle JR, Edward NB, Shaun LJ. The structure of MbtI from mycobacterium Tuberculosis, the first enzyme in the biosynthesis of siderophore mycobactin, reveals it to be a salicylate synthase. J Bacteriol 2006; 188: 6081–6091
  • Zeng XM, Martin GP, Mariott C. The controlled delivery of drug to the lung. Int J Pharm 1995; 124: 149–164
  • Dutt M, Khuller GK. Chemotherapy of Mycobacterium tuberculosis infections in mice with a combination of isoniazid and rifampicin entrapped in poly (dl-lactide-co-glycolide) microparticles. J Antimicrob. Chemother 2001; 47: 829–835
  • Patton JS, Fishburn CS, Weers JG. The lung as a portal for entry of systemic drug delivery. Proc Am Thorac Soc 2004; 1: 338–344
  • McCallion ON, Taylor KM, Thomas M, Taylor AJ. Nebulization of fluids of different physico-chemical properties with air-jet and ultrasonic nebulizers. Pharm Res 1995; 12: 1682–1688
  • Patrick OH, Hickey AJ. Respirable PLGA microspheres containing rifampicin for the treatment of tuberculosis: manufacture and characterization. Pharm Res 2000; 17: 955–961
  • Pandey R, Khuller GK. Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis. Tuberculosis 2005; 85: 227–234
  • Sally-ann C. Carrier based strategies for targeting protein and peptide drugs to the lung. AAPS Journal 2005; l7: E20–E41
  • O'Brien RJ, Spigelman M. New drugs for tuberculosis: current status and future prospects. Clin Chest Med 2005; 26: 327–340
  • Philip O, Alimuddin Z, Isabella R, Roxana R, Peter M, Melba G, John MG. Treatment of tuberculosis; present status and future prospects. Bull WHO 2005; 83: 857–865
  • Gupta P, Hameed S, Jain R. Heterocyclic compounds ring-substituted imidazoles as a new class of anti-tuberculosis agents. ChemInform, 36(1), online.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.