903
Views
26
CrossRef citations to date
0
Altmetric
Articles

Supramolecular methods: the chloride/nitrate transmembrane exchange assay

&
Pages 297-312 | Received 04 Dec 2018, Accepted 20 Jan 2019, Published online: 11 Feb 2019

References

  • Busschaert, N.; Gale, P.A. Small-Molecule Lipid-Bilayer Anion Transporters for Biological Applications. Angew. Chem. Int. Ed. 2013, 52, 1374–1382. DOI:10.1002/anie.201207535.
  • Gale, P.A.; Perez-Tomas, R.; Quesada, R. Anion Transporters and Biological Systems. Acc. Chem. Res. 2013, 46, 2801–2813. DOI:10.1021/ar400019p.
  • Gadsby, D.C. Ion Channels versus Ion Pumps: The Principal Difference, in Principle. Nat. Rev. Mol. Cell. Biol. 2009, 10, 344. DOI:10.1038/nrm2668.
  • Ashcroft, F.M. Ion Channels and Disease; Academic Press, San Diego, 2000.
  • Vankeerberghen, A.; Cuppens, H.; Cassiman, -J.-J. The Cystic Fibrosis Transmembrane Conductance Regulator: An Intriguing Protein with Pleiotropic Functions. J. Cyst. Fibros. 2002, 1, 13–29.
  • Miyamura, N.; Matsumoto, K.; Taguchi, T.; Tokunaga, H.; Nishikawa, T.; Nishida, K.; Toyonaga, T.; Sakakida, M.; Araki, E. Atypical Bartter Syndrome with Sensorineural Deafness with G47R Mutation of the β-Subunit for ClC-Ka and ClC-Kb Chloride Channels, Barttin. J. Clin. Endocrinol. Metab. 2003, 88, 781–786. DOI:10.1210/jc.2002-021398.
  • Ashcroft, F.M. From Molecule to Malady. Nature. 2006, 440, 440–447. DOI:10.1038/nature04707.
  • Davis, A.P.; Sheppard, D.N.; Smith, B.D. Development of Synthetic Membrane Transporters for Anions. Chem. Soc. Rev. 2007, 36, 348–357. DOI:10.1039/b512651g.
  • Davis, J.T.; Okunola, O.; Quesada, R. Recent Advances in the Transmembrane Transport of Anions. Chem. Soc. Rev. 2010, 39, 3843–3862. DOI:10.1039/b926164h.
  • Benke, B.P.; Aich, P.; Kim, Y.; Kim, K.L.; Rohman, M.R.; Hong, S.; Hwang, I.-C.; Lee, E.H.; Roh, J.H.; Kim, K. Iodide-Selective Synthetic Ion Channels Based on Shape-Persistent Organic Cages. J. Am. Chem. Soc. 2017, 139, 7432–7435. DOI:10.1021/jacs.7b02708.
  • Schlesinger, P.H.; Ferdani, R.; Liu, J.; Pajewska, J.; Pajewski, R.; Saito, M.; Shabany, H.; Gokel, G.W. SCMTR: A Chloride-Selective, Membrane-Anchored Peptide Channel that Exhibits Voltage Gating. J. Am. Chem. Soc. 2002, 124, 1848–1849.
  • Koulov, A.V.; Lambert, T.N.; Shukla, R.; Jain, M.; Boon, J.M.; Smith, B.D.; Li, H.; Sheppard, D.N.; Joos, J.-B.; Clare, J.P.; Davis, A.P. Chloride Transport across Vesicle and Cell Membranes by Steroid-Based Receptors. Angew. Chem. Int. Ed. 2003, 42, 4931–4933. DOI:10.1002/(ISSN)1521-3773.
  • Koulov, A.V.; Mahoney, J.M.; Smith, B.D. Facilitated Transport of Sodium or Potassium Chloride across Vesicle Membranes Using a Ditopic Salt-Binding Macrobicycle. Org. Biomol. Chem. 2003, 1, 27–29. DOI:10.1039/b208873h.
  • Spooner, M.J.; Gale, P.A. A Tripodal Tris-Selenourea Anion Transporter Matches the Activity of Its Thio- Analogue but Shows Distinct Selectivity. Supramol. Chem. 2018, 30, 514–519.
  • Jowett, L.A.; Howe, E.N.W.; Wu, X.; Busschaert, N.; Gale, P.A. New Insights into the Anion Transport Selectivity and Mechanism of Tren-Based Tris-(Thio)Ureas. Chem. Eur. J. 2018, 24, 10475–10487. DOI:10.1002/chem.201801463.
  • Valkenier, H.; Davis, A.P. Making a Match for Valinomycin: Steroidal Scaffolds in the Design of Electroneutral, Electrogenic Anion Carriers. Acc. Chem. Res. 2013, 46, 2898–2909. DOI:10.1021/ar4000345.
  • Yang, Y.; Wu, X.; Busschaert, N.; Furuta, H.; Gale, P.A. Dissecting the Chloride-Nitrate Anion Transport Assay. Chem. Commun. 2017, 53, 9230–9233. DOI:10.1039/C7CC04912A.
  • Wu, X.; Judd, L.W.; Howe, E.N.W.; Withecombe, A.M.; Soto-Cerrato, V.; Li, H.; Busschaert, N.; Valkenier, H.; Pérez-Tomás, R.; Sheppard, D.N.; Jiang, Y.-B.; Davis, A.P.; Gale, P.A. Nonprotonophoric Electrogenic Cl- Transport Mediated by Valinomycin-Like Carriers. Chem. 2016, 1, 127–146. DOI:10.1016/j.chempr.2016.04.002.
  • Davis, A.P.; Perry, J.J.; Williams, R.P. Anion Recognition by Tripodal Receptors Derived from Cholic Acid. J. Am. Chem. Soc. 1997, 119, 1793–1794.
  • McNally, B.A.; Koulov, A.V.; Lambert, T.N.; Smith, B.D.; Joos, J.-B.; Sisson, A.L.; Clare, J.P.; Sgarlata, V.; Judd, L.W.; Magro, G.; Davis, A.P. Structure–Activity Relationships in Cholapod Anion Carriers: Enhanced Transmembrane Chloride Transport through Substituent Tuning. Chem. Eur. J. 2008, 14, 9599–9606. DOI:10.1002/chem.v14:31.
  • Judd, L.W.; Davis, A.P. From Cholapod to Cholaphane Transmembrane Anion Carriers: Accelerated Transport through Binding Site Enclosure. Chem. Commun. 2010, 46, 2227–2229. DOI:10.1039/b927005a.
  • McNally, B.A.; Koulov, A.V.; Smith, B.D.; Joos, J.-B.; Davis, A.P. A Fluorescent Assay for Chloride Transport; Identification of A Synthetic Anionophore with Improved Activity. Chem. Commun. 2005, 1087–1089. DOI:10.1039/b414589e.
  • Busschaert, N.; Gale, P.A.; Haynes, C.J.E.; Light, M.E.; Moore, S.J.; Tong, C.C.; Davis, J.T.; Harrell Jr., W.A. Tripodal Transmembrane Transporters for Bicarbonate. Chem. Commun. 2010, 46, 6252–6254. DOI:10.1039/c0cc01684e.
  • Busschaert, N.; Wenzel, M.; Light, M.E.; Iglesias-Hernández, P.; Pérez-Tomás, R.; Gale, P.A. Structure–Activity Relationships in Tripodal Transmembrane Anion Transporters: The Effect of Fluorination. J. Am. Chem. Soc. 2011, 133, 14136–14148. DOI:10.1021/ja205884y.
  • Busschaert, N.; Kirby, I.L.; Young, S.; Coles, S.J.; Horton, P.N.; Light, M.E.; Gale, P.A. Squaramides as Potent Transmembrane Anion Transporters. Angew. Chem. Int. Ed. 2012, 51, 4426–4430. DOI:10.1002/anie.201200729.
  • Busschaert, N.; Elmes, R.B.P.; Czech, D.D.; Wu, X.; Kirby, I.L.; Peck, E.M.; Hendzel, K.D.; Shaw, S.K.; Chan, B.; Smith, B.D.; Jolliffe, K.A.; Gale, P.A. Thiosquaramides: PH Switchable Anion Transporters. Chem. Sci. 2014, 5, 3617–3626. DOI:10.1039/C4SC01629G.
  • Moore, S.J.; Haynes, C.J.E.; Gonzalez, J.; Sutton, J.L.; Brooks, S.J.; Light, M.E.; Herniman, J.; Langley, G.J.; Soto-Cerrato, V.; Perez-Tomas, R.; Marques, I.; Costa, P.J.; Felix, V.; Gale, P.A. Chloride, Carboxylate and Carbonate Transport by Ortho-Phenylenediamine-Based Bisureas. Chem. Sci. 2013, 4, 103–117. DOI:10.1039/C2SC21112B.
  • Karagiannidis, L.E.; Haynes, C.J.E.; Holder, K.J.; Kirby, I.L.; Moore, S.J.; Wells, N.J.; Gale, P.A. Highly Effective yet Simple Transmembrane Anion Transporters Based upon Ortho-Phenylenediamine bis-Ureas. Chem. Commun. 2014, 50, 12050–12053. DOI:10.1039/C4CC05519E.
  • Moore, S.J.; Wenzel, M.; Light, M.E.; Morley, R.; Bradberry, S.J.; Gomez-Iglesias, P.; Soto-Cerrato, V.; Perez-Tomas, R.; Gale, P.A. Towards “Drug-Like” Indole-Based Transmembrane Anion Transporters. Chem. Sci.. 2012, 3, 2501–2509. DOI:10.1039/c2sc20551c.
  • Van Rossom, W.; Asby, D.J.; Tavassoli, A.; Gale, P.A. Perenosins: A New Class of Anion Transporter with Anti-Cancer Activity. Org. Biomol. Chem. 2016, 14, 2645–2650. DOI:10.1039/C6OB00002A.
  • Jowett, L.A.; Howe, E.N.W.; Soto-Cerrato, V.; Van Rossom, W.; Pérez-Tomás, R.; Gale, P.A. Indole-Based Perenosins as Highly Potent HCl Transporters and Potential Anti-Cancer Agents. Sci. Rep. 2017, 7, 9397. DOI:10.1038/s41598-017-09645-9.
  • Howe, E.N.W.; Busschaert, N.; Wu, X.; Berry, S.N.; Ho, J.; Light, M.E.; Czech, D.D.; Klein, H.A.; Kitchen, J.A.; Gale, P.A. pH-Regulated Nonelectrogenic Anion Transport by Phenylthiosemicarbazones. J. Am. Chem. Soc. 2016, 138, 8301–8308. DOI:10.1021/jacs.6b04656.
  • Choi, Y.R.; Kim, G.C.; Jeon, H.-G.; Park, J.; Namkung, W.; Jeong, K.-S. Azobenzene-Based Chloride Transporters with Light-Controllable Activities. Chem. Commun. 2014, 50, 15305–15308. DOI:10.1039/C4CC07560A.
  • Yoder, N.; Yoshioka, C.; Gouaux, E. Gating Mechanisms of Acid-Sensing Ion Channels. Nature. 2018, 555, 397. DOI:10.1038/nature25782.
  • Elmes, R.B.P.; Busschaert, N.; Czech, D.D.; Gale, P.A.; Jolliffe, K.A. pH Switchable Anion Transport by an Oxothiosquaramide. Chem. Commun. 2015, 51, 10107–10110. DOI:10.1039/C5CC03625A.
  • Mazzio, E.A.; Smith, B.; Soliman, K.F.A. Evaluation of Endogenous Acidic Metabolic Products Associated with Carbohydrate Metabolism in Tumor Cells. Cell Biol. Toxicol. 2010, 26, 177–188. DOI:10.1007/s10565-009-9138-6.
  • Bailey, K.M.; Wojtkowiak, J.W.; Hashim, A.I.; Gillies, R.J. Targeting the Metabolic Microenvironment of Tumors. Adv. Pharmacol. 2012, 65, 63–107. DOI:10.1016/B978-0-12-397927-8.00004-X.
  • Stockbridge, R.B.; Lim, -H.-H.; Otten, R.; Williams, C.; Shane, T.; Weinberg, Z.; Miller, C. Fluoride Resistance and Transport by Riboswitch-Controlled CLC Antiporters. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 15289–15294. DOI:10.1073/pnas.1210896109.
  • Markovich, D.; Physiological Roles and Regulation of Mammalian Sulfate Transporters. Physiol. Rev. 2001, 81, 1499–1533. DOI:10.1152/physrev.2001.81.4.1499.
  • Addiscott, T.M.; Benjamin, N. Nitrate and Human Health. Soil Use Manage. 2004, 20, 98–104. DOI:10.1079/SUM2004256.
  • Portelli, C. The Role of the Sodium, Potassium, Magnesium and Calcium Ions in the Transfer of Bioenergy, and the Possibility of Their Substitution by Other Cations. Physiologie (Bucarest). 1977, 14, 43–46.
  • Clarke, H.J.; Howe, E.N.W.; Wu, X.; Sommer, F.; Yano, M.; Light, M.E.; Kubik, S.; Gale, P.A. Transmembrane Fluoride Transport: Direct Measurement and Selectivity Studies. J. Am. Chem. Soc. 2016. DOI:10.1021/jacs.6b10694.
  • Marcus, Y. Thermodynamics of Solvation of Ions. Part 5.-Gibbs Free Energy of Hydration at 298.15 K. J. Chem. Soc., Faraday Trans. 1991, 87, 2995–2999. DOI:10.1039/FT9918702995.
  • Busschaert, N.; Park, S.-H.; Baek, K.-H.; Choi, Y.P.; Park, J.; Howe, E.N.W.; Hiscock, J.R.; Karagiannidis, L.E.; Marques, I.; Félix, V.; Namkung, W.; Sessler, J.L.; Gale, P.A.; Shin, I. A Synthetic Ion Transporter that Disrupts Autophagy and Induces Apoptosis by Perturbing Cellular Chloride Concentrations. Nat. Chem. 2017, 9, 667–675. DOI:10.1038/nchem.2706.
  • Busschaert, N.; Karagiannidis, L.E.; Wenzel, M.; Haynes, C.J.E.; Wells, N.J.; Young, P.G.; Makuc, D.; Plavec, J.; Jolliffe, K.A.; Gale, P.A. Synthetic Transporters for Sulfate: A New Method for the Direct Detection of Lipid Bilayer Sulfate Transport. Chem. Sci. 2014, 5, 1118–1127. DOI:10.1039/c3sc52006d.
  • Yano, M.; Tong, C.C.; Light, M.E.; Schmidtchen, F.P.; Gale, P.A. Calix[4]pyrrole-Based Anion Transporters with Tuneable Transport Properties. Org. Biomol. Chem. 2010, 8, 4356–4363. DOI:10.1039/c0ob00128g.
  • Berry, S.N.; Soto-Cerrato, V.; Howe, E.N.W.; Clarke, H.J.; Mistry, I.; Tavassoli, A.; Chang, Y.-T.; Perez-Tomas, R.; Gale, P.A. Fluorescent Transmembrane Anion Transporters: Shedding Light on Anionophoric Activity in Cells. Chem. Sci. 2016, 7, 5069–5077. DOI:10.1039/c6sc01643j.
  • Hill, A.V. The Combinations of Haemoglobin with Oxygen and with Carbon Monoxide. I. Biochem. J. 1913, 7, 471–480.
  • Clarke, H.J.; Van Rossom, W.; Horton, P.N.; Light, M.E.; Gale, P.A. Anion Transport and Binding Properties of N N′-(Phenylmethylene)Dibenzamide Based Receptors. Supramol. Chem. 2016, 28, 10–17. DOI:10.1080/10610278.2015.1034126.
  • Haynes, C.J.E.; Busschaert, N.; Kirby, I.L.; Herniman, J.; Light, M.E.; Wells, N.J.; Marques, I.; Felix, V.; Gale, P.A. Acylthioureas as Anion Transporters: The Effect of Intramolecular Hydrogen Bonding. Org. Biomol. Chem. 2014, 12, 62–72. DOI:10.1039/c3ob41522h.
  • Spooner, M.J.; Gale, P.A. Anion Transport across Varying Lipid Membranes - the Effect of Lipophilicity. Chem. Commun. 2015, 51, 4883–4886. DOI:10.1039/C5CC00823A.
  • Hussain, S.; Brotherhood, P.R.; Judd, L.W.; Davis, A.P. Diaxial Diureido Decalins as Compact, Efficient, and Tunable Anion Transporters. J. Am. Chem. Soc. 2011, 133, 1614–1617.
  • Lisbjerg, M.; Valkenier, H.; Jessen, B.M.; Al-Kerdi, H.; Davis, A.P.; Pittelkow, M. Biotin[6]Uril Esters: Chloride-Selective Transmembrane Anion Carriers Employing C—H···Anion Interactions. J. Am. Chem. Soc. 2015, 137, 4948–4951. DOI:10.1021/jacs.5b02306.
  • Dias, C.M.; Li, H.; Valkenier, H.; Karagiannidis, L.E.; Gale, P.A.; Sheppard, D.N.; Davis, A.P. Anion Transport by Ortho-Phenylene bis-Ureas across Cell and Vesicle Membranes. Org. Biomol. Chem. 2018, 16, 1083–1087. DOI:10.1039/c7ob02787g.
  • Sakai, N.; Matile, S. The Determination of the Ion Selectivity of Synthetic Ion Channels and Pores in Vesicles. J. Phys. Org. Chem. 2006, 19, 452–460. DOI:10.1002/(ISSN)1099-1395.
  • Jentzsch, A.V.; Emery, D.; Mareda, J.; Nayak, S.K.; Metrangolo, P.; Resnati, G.; Sakai, N.; Matile, S. Transmembrane Anion Transport Mediated by Halogen-Bond Donors. Nat. Commun. 2012, 3, 905. DOI:10.1038/ncomms1902.
  • Macchione, M.; Tsemperouli, M.; Goujon, A.; Mallia, A.R.; Sakai, N.; Sugihara, K.; Matile, S. Mechanosensitive Oligodithienothiophenes Transmembrane Anion Transport Along Chalcogen-Bonding Cascades. Helv. Chim. Acta. 2018, 101, e1800014. DOI:10.1002/hlca.201800014.
  • Roy, A.; Saha, D.; Mukherjee, A.; One-Pot Synthesis, T.P. Transmembrane Chloride Transport Properties of C3-Symmetric Benzoxazine Urea. Org. Lett. 2016, 18, 5864–5867. DOI:10.1021/acs.orglett.6b02940.
  • Roy, A.; Biswas, O.; Talukdar, P. Bis(Sulfonamide) Transmembrane Carriers Allow pH-Gated Inversion of Ion Selectivity. Chem. Commun.. 2017, 53, 3122–3125. DOI:10.1039/C7CC00165G.
  • Roy, A.; Gautam, A.; Malla, J.A.; Sarkar, S.; Mukherjee, A.; Talukdar, P. Self-Assembly of Small-Molecule Fumaramides Allows Transmembrane Chloride Channel Formation. Chem. Commun. 2018, 54, 2024–2027.
  • Avanti Polar Lipids Inc. https://avantilipids.com/product/840051 ( accessedAug 9, 2018).
  • Avanti Polar Lipids Inc. https://avantilipids.com/product/850457 (accessed Aug 10, 2018).
  • Wu, X.; Gale, P.A. Small-Molecule Uncoupling Protein Mimics: Synthetic Anion Receptors as Fatty Acid-Activated Proton Transporters. J. Am. Chem. Soc. 2016, 138, 16508–16514. DOI:10.1021/jacs.6b10615.
  • Fischer, R.B. Ion-Selective Electrodes. J. Chem. Educ. 1974, 51, 387. DOI:10.1021/ed051p387.
  • De Marco, R.; Clarke, G.; Pejcic, B. Ion-Selective Electrode Potentiometry in Environmental Analysis. Electroanalysis. 2007, 19, 1987–2001.
  • Covington, A.K. Ion Selective Electrode Method; CRC Press, Boca Raton, 1979.
  • Thermo Fisher Scientific Inc. http://www.thermofishersci.in/lit/Fisherbrand%20Accumet%20Electrodes%20Handbook.pdf ( accessed Nov 23, 2018).
  • Thermo Fisher Scientific Inc. https://www.fishersci.com/shop/products/thermo-scientific-orion-chloride-combination-electrode-mercury-free-chloride-combination/13620627 ( accessed Nov 28, 2018).
  • Thermo Fisher Scientific Inc. https://assets.thermofisher.com/TFS-Assets/LSG/manuals/D12671~.pdf ( accessed Nov 22, 2018).
  • Toledo, M. https://www.mt.com/dam/non-indexed/po/ana/titration/ApplGuide_ISE_Cl_30253765_V04.15.pdf (accessed Nov 23, 2018).
  • Thermo Fisher Scientific Inc. https://www.fishersci.co.uk/shop/products/orion-star-a211-ph-benchtop-meter/p-4529651 (accessed Nov 27, 2018).
  • Avanti Polar Lipids Inc. https://avantilipids.com/divisions/equipment-products/mini-extruder-assembly-instructions/ (accessed Aug 17, 2018).
  • Bailey, W.F.; Lambert, K.M.; Stempel, Z.D.; Wiberg, K.B.; Mercado, B.Q. Controlling the Conformational Energy of a Phenyl Group by Tuning the Strength of a Nonclassical CH···O Hydrogen Bond: The Case of 5-Phenyl-1,3-Dioxane. J. Org. Chem. 2016, 81, 12116–12127.
  • Bhosale, S.; Matile, S. A Simple Method to Identify Supramolecules in Action: Hill Coefficients for Exergonic Self-Assembly. Chirality. 2006, 18, 849–856. DOI:10.1002/chir.20326.
  • Matile, S.; Sakai, N.; Hennig, A. Transport Experiments in Membranes. In Supramolecular Chemistry: From Molecules to Nanomaterials: Steed, J.W., Gale, P.A., Eds.; 1st. ed.; Wiley, Hoboken, NJ, 2012; Vol. 2; pp 473–500.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.