139
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Supramolecular interactions in the heteroarylimine-substituted calix[4]arenes: the formation of cyclic dodecanuclear palladium aggregates

, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 129-142 | Received 04 Apr 2021, Accepted 12 Jun 2021, Published online: 30 Jun 2021

References

  • Gutsche CD. Calixarenes: an introduction. monographs in supramolecular chemistry. Cambridge: Royal Society of Chemistry; 2008.
  • Asfari Z, Böhmer V, Harrowfield J, et al., Eds. Calixarene 2001. Dordrecht: Kluwer Academic Publishers; 2001.
  • Neri P, Sessler JL, Wang M-X, Eds. Calixarenes and beyond. Switzerland: Springer; 2016.
  • Gutsche CD. Calixarenes revisited. monographs in supramolecular chemistry. London: Royal Society of Chemistry; 1998.
  • Kalchenko O, Lipkowski J, Kalchenko V. Supramolecular and analytical chemistry of calixarenes. In: Atwood JL, editor. Comprehensive supramolecular chemistry II. Vol. 2. Oxford: Elsevier; 2017. p. 239–261.
  • Beer PD, Hayes EJ. Transition metal and organometallic anion complexation agents. Coord. Chem. Rev. 2003;240(1–2):167–189.
  • Gale PA, Howe ENW, Wu X. Anion receptor chemistry. Chem. 2016;1(3):351–422.
  • Meisel JW, Negin S, Gokel MR, et al. Overview of anion receptor chemistry. In: Atwood JL, editors. Comprehensive supramolecular chemistry II. Vol. 2. Oxford: Elsevier; 2017. p. 495–520.
  • Mandolini L, Ungaro R. Calixarene in Action. London: Imperial College; 2000.
  • Lumetta GJ, Rogers RD, Gopalan AS, Eds. Calixarenes for Separations. Washington, DC: American Chemical Society; 2000.
  • Rodik RV, Boyko VI, Kalchenko VI. Calixarenes in biotechnology and bio-medical researches. In: Reitz AB, Rahman A, Choudhary MI, editors. Frontiers in medicinal chemistry. Vol. 8. BenthameBooks; 2016. p. 206–301.
  • Pan Y-C, Hu X-Y, Guo D-S. Biomedical Applications of Calixarenes: state-of-the-art and perspectives. Angew Chem Int Ed. 2021;60(6):2768–2794.
  • Vicens J, Harrowfield J, Eds. Calixarenes in the Nanoworld. Dordrecht: Springer; 2007.
  • Tauran Y, Kim B, Coleman A,W. Bio-Applications of Calix[n]arene capped silver nanoparticles. J. Nanosci. Nanotechnol. 2015;15(9):6308–6326.
  • Shulov I, Rodik RV, Arntz Y, et al. Protein-sized bright fluorogenic nanoparticles based on cross-linked calixarene cicelles with cyanine corona. Angew. Chem. Int. Ed. 2016;55(51):15884–15888.
  • Weiser C, Dieleman CB, Calixarene MD. Resorcinarene lligands in transition metal chemistry. Coord. Chem. Rev. 1997;165(1):93–161.
  • Tsymbal LV, Lampeka YD, Boyko VI, et al. A ladder-type coordination polymer constructed from two macrocyclic units – calix[4]arene tetracarboxylate and azamacrocyclic nickel(ii) complex. CrystEngComm. 2014;16(18):3707–3711.
  • Sémeril D, Matt D. Synthesis and catalytic relevance of P(III) and P(V)-functionalised calixarenes and resorcinarenes. Coord Chem Rev. 2014;279:58–95.
  • Matvieiev Y, Solovyov A, Shishkina S, et al. Upper-rim calixarene phosphines consisting of multiple lower-rim oh functional groups: synthesis and characterization. Supramol. Chem. 2014;26(10–12):825–835.
  • Kharchenko S, Drapailo A, Shishkina S, et al. Dibutylphosphinoylmethyloxythiacalix[4]arenes. synthesis, structure, americium, europium and technetium extractio. Supramol Chem. 2014;26(10–12):864–872.
  • Boyko V, Rodik R, Danylyuk O, et al. Tetrazolecalix[4]arenes as new ligands for palladium(II). Tetrahedron. 2005;61(52):12282–12287.
  • Homden DM, Redshaw C. The use of calixarenes in metal-based catalysis. Chem. Rev. 2008;108(12):5086–5130.
  • Schuhle DT, Peters JA, Schatz J. Metal binding calixarenes with potential biomimetic and biomedical applications. Coord. Chem. Rev. 2011;255(23–24):2727–2745.
  • Cacciapaglia R, Casnati A, Mandolini L, et al. Efficient and selective ccleavage of RNA oligonucleotides by calix[4]arene-based synthetic metallonucleases. J. Am. Chem. Soc. 2007;129(41):12512–12520.
  • Götzke L, Schaper G, März J, et al. Coordination Chemistry of f-block metal ions with ligands bearing bio-relevant functional groups. Coord Chem Rev. 2019;386:267–309.
  • Leoncini A, Huskens J, Verboom W. Ligands for f-element extraction used in the nuclear fuel cycle. Chem Soc Rev. 2017;46:7229–7273.
  • Klimentová J, Vojtıšek P. New receptors for anions in water: synthesis, characterization, x-ray structures of new derivatives of 5,11,17,23-tetraamino-25,26,27,28-tetrapropyloxycalix[4]arene. J. Mol. Struct. 2007;826(1):48–63.
  • Rodik RV, Boyko VI, Danylyuk OB, et al. Calix[4]arenesulfonylamidines. Synthesis, Structure and Influence on Mg2+, ATP-dependent Calcium Pumps. Tetrahedron Lett. 2005;46(43):7459–7462. .
  • Timmerman P, Verboom W, Reinhoudt DN, et al. Novel routes for the synthesis of upper rim amino and methoxycarbonyl functionalized calix[4]arenes carrying other types of functional groups. Synthesis. 1994;1994(2):185–192.
  • Otwinowski Z, Minor W. Processing of X-Ray diffraction data collected in oscillation mode. In: Carter CW Jr., Sweet RM, editors. Methods in Enzymology, Macromolecular Crystallography, Part A. Vol. 276. New York: Academic Press; 1997. p. 307–326.
  • Sheldrick GM. Crystal Structure Refinement with SHELXL. Acta Crystalloge Sect C.2015;C71:3–8.
  • Reddy PA, Kashyap RP, Watson WH, et al. Calixarenes 30. Calixquinones. Isr J Chem 1992;32(1):89–96.
  • Casnati A, Comelli E, Fabbi M, et al. Synthesis, conformations and redox properties of diametrical calix[4]arenediquinones. Rec Trav Chim Pays-Bas. 1993;112(6):384–392.
  • Nishio M, Umezawa Y, Honda K, et al. CH/π Hydrogen bonds in organic and organometallic chemistry. CrystEngComm. 2009;11:1757–1788.
  • Fischer C, Gruber T, Eissmann D, et al. Unusual behavior of a calix[4]arene featuring the coexistence of basic cone and 1,2-alternate conformations in a solvated crystal. Cryst. Growth Des. 2011;11(5):1989–1994.
  • Notti A, Occhipinti S, Pappalardo S, et al. Calix[4]- and calix[5]arene-based multicavity macrocycles. J. Org. Chem. 2002;67(21):7569–7572.
  • Groom CR, Bruno IJ, Lightfoot MP, et al. The cambridge structural database. Acta Cryst Sect B. 2016;B72(2):171–179.
  • Buffin BP, Fonger EB, Kundu A. Palladium(II) and platinum(ii) complexes containing hydrophilic pyridinylimine-based ligands. Inorg Chim Acta. 2003;355:340–346.
  • Park S, Lee J, Jeong JH, et al. Palladium(II) complexes containing N, N’-bidentate imine ligands derived from picolinaldehyde and substituted anilines: synthesis, structure and polymerisation of methyl methacrylate. Polyhedron. 2018;151:82–89.
  • Pratihar P, Jha S, Mondal TK, et al. Palladium(II) Complexes of N-[(2-pyridyl)methyliden]-α(or β)-aminonaphthalene: single Crystal X-Ray Structure of Di-chloro-N-[{(2-pyridyl)methyliden}-β-aminonaphthalene]palladium(II), Pd(β-NaiPy)Cl2, Spectra and DFT, TD-DFT Study. Polyhedron. 2007;26(15):4328–4344.
  • Roy S, Saha R, Mondal TK, et al. Palladium(II) and Platinum(II) Complexes of N-{(2-pyridyl)methyliden}-6-coumarin and N-{(2-hydroxy)benzyliden}-6-coumarin. Inorg Chim Acta. 2014;423:52–61.
  • Roy AS, Saha P, Mitra P, et al. Unsymmetrical Diimine Chelation to M(II) (M= Zn, Cd, Pd): atropisomerism, pi–pi Stacking and Photoluminescence. Dalton Trans. 2011;40(28):7375–7384.
  • Suwinska K, Leśniewska B, Wszelaka-Rylik M, et al. A dodecameric self-assembled calix[4]arene aggregate with two types of cavities. Chem. Comm. 2011;47(31):8766–8768.
  • Beer PD, Gale PA, Chen Z, et al. New Ionophoric Calix[4]diquinones: coordination Chemistry, Electrochemistry, and X-Ray Crystal Structures. Inorg.Chem. 1997;36(25):5880–5893.
  • Meddeb-Limen S, Besbes-Hentati S, Said H, et al. Electrosynthesis and Structural Studies of 5,17-Di-tert-butyl-26,28-dimethoxycalix[4]arene-25,27-diquinone. X-ray Str Anal Online. 2010;26: 29–30.
  • Reddy PA, Kashyap RP, Gutsche CD, et al. CSD Communication (Private Communication) 2001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.