270
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Calixarene-Based lead receptors: an NMR, DFT and X-Ray synergetic approach

, , , , & ORCID Icon
Pages 231-244 | Received 19 May 2021, Accepted 13 Jul 2021, Published online: 21 Sep 2021

Reference

  • Toth G, Hermann T, Da Silva MR, et al. Heavy metals in agricultural soils of the European union with implication for food safety. Environ Int. 2016;88:299–309.
  • Cicero CE, Mostile G, Vasta R, et al. Metals and neurodegenerative diseases. A systematic review. Environ Res. 2017;159:82–94.
  • Reuben A. Childhood lead exposure and adult neurodegenerative disease. J Alzheimer’s Disease. 2018;64(1):17–42.
  • Gutsche CD. Calixarenes; monographs in supramolecular chemistry. Cambridge, UK: The Royal Society of Chemistry; 1989; Gutsche, C.D. Calixarenes, An Introduction; Monographs in Supramolecular Chemistry; The Royal Society of Chemistry: Cambridge, UK, 2008.
  • Neri P, Sessler JL, Wang M-X, Eds. Calixarenes and beyond. Switzerland: Springer International Publishing; 2016.
  • Deska M, Sliwa, W DB. Selected applications of calixarene derivatives. ARKIVOC. 2015;2015(vi):393–416.
  • Espanol ES, Maldonado M. Host-guest recognition of pesticides by calixarenes. Critical Rev Anal Chem. 2019;49(5):383–394.
  • Razuvayeva Y, Kashapov R, Zakharova L. Calixarene-based pure and mixed assemblies for biomedical applications. Supramol Chem. 2020;32(3):178–206.
  • Arnaud-Neu F, McKervey MA, Schwing-Weill MJ. Metal-ion complexation by narrow rim carbonyl derivatives. In: Asfari Z, Böhmer V, Harrowfield J, et al., editors. Calixarenes 2001. Dordrecht: Kluwer Academic Publishers; 2001. p. 385–406.
  • Creaven BS, Donlon DF, McGinley J. Coordination chemistry of calix[4]arene derivatives with lower rim functionalisation and their applications. Coord Chem Rev. 2009;253(7–8):893–962.
  • Kurniawan YS, Ryu M, Sathuluri RR, et al. Jumina. Separation of Pb(II) ion with tetraacetic acid derivative of calix[4]arene by using droplet-based microreactor system. Indones J Chem. 2019;19(2):368–375.
  • Kurniawan YS, Sathuluri RR, Iwasaki W, et al. Jumina. microfluidic reactor for Pb(II) ion extraction and removal with an amide derivative of calix[4]arene supported by spectroscopic studies. Microchem J. 2018;142:377–384.
  • Kocer MB, Erdogan ZO, Oguz M, et al. A calix[4]arene-tren modified electrode for determination of lead ions in aqueous solution. Org Commun. 2019;12(3):160–168.
  • Kucukkolbasi S, Sayin S, Yilmaz M. Fabrication and application of a new modified electrochemical sensor using newly synthesized calixarene-grafted MWCNTs for simultaneous determination of Cu(II) and Pb(II). Acta Chim Slov. 2019;66:839–849.
  • Marcos PM. Functionalization and properties of homooxacalixarenes. In: Neri P, Sessler JL, Wang M-X, editors. Calixarenes and beyond. Switzerland: Springer International Publishing; 2016. p. 445–466.
  • Marcos PM, Félix S, Ascenso JR, et al. Complexation and transport of alkali and alkaline earth metal cations p-tert -Butyldihomooxacalix[4]arene tetraketone derivatives. Supramol Chem. 2006;18(4):285–297.
  • Marcos PM, Félix S, Ascenso JR, et al. Complexation and transport of transition and heavy metal cations by p-tert-butyldihomooxacalix[4]arene tetraketones and X-ray crystal structure of the tert-butyl ketone derivative. New J Chem. 2007;31(12):2111–2119.
  • Marcos PM, Ascenso JR, Segurado MAP, et al. Synthesis, binding properties and theoretical studies of p-tert-butylhexahomotrioxacalix[3]arene tri(adamantyl)ketone with alkali, alkaline earth, transition, heavy metal and lanthanide cations. Tetrahedron. 2009;65(2):496–503.
  • Fonseca JD, Marcos PM, Ascenso JR, et al. Extraction and complexation of lanthanide ions by dihomooxacalix[4]arene and calix[4]arene tetraketone derivatives: an experimental and molecular dynamics investigation. C R Chimie. 2019;22(9–10):639–647.
  • Félix S, Ascenso JR, Lamartine R, et al. Synthesis and conformational analysis of p-tert-butyldihomooxacalix[4]arene derivatives containing the carbonyl group. Tetrahedron. 1999;55(28):8539–8546.
  • Arnaud-Neu F, Collins EM, Deasy M, et al. X-ray crystal structures, and cation-binding properties of alkyl calixaryl esters and ketones, a new family of macrocyclic molecular receptors. J Am Chem Soc. 1989;111(23):8681–8691.
  • Kabsch WXDS. Acta Crystallogr. Sect D Biol Crystallogr. 2010;66(2):125–132.
  • Kabsch W. Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr Sect D Biol Crystallogr. 2010;66(2):133–144.
  • Sheldrick GMSHELXT. Integrated space-group and crystal-structure determination. Acta Crystallogr. 2015;A71:3–8.
  • Sheldrick GM. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015;C71:3–8.
  • Farrugia LJ, Win GX. WinGX and ORTEP for windows : an update. J Appl Crystallogr. 2012;45(4):849–854.
  • Vold RL, Waugh JS, Klein MP, et al. Measurement of spin relaxation in complex systems. J Chem Phys. 1968;48(8):3831–3832.
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 16 Rev. B.01. Wallingford, CT. p. 2016.
  • Becke AD. Density‐functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993;98(7):5648–5652.
  • Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A. 1988;38(6):3098–3100.
  • Zhao Y, Truhlar DG. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theory Chem Acc. 2008;120:215–241.
  • Chai J-D, Head-Gordon M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys. 2008;10(44):6615–6620.
  • Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys. 2010;132(15):154104–154119.
  • Wolinski K, Hinton JF, Pulay P. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc. 1990;112(23):8251–8260.
  • Bocheńska M, Cragg PJ, Guziński M, et al. Ion-selective electrodes based on p-tert-butyl-homooxacalixarene di(ethyl)amides. Supramol Chem. 2009;21(8):732–737.
  • Gattuso G, Notti A, Parisi MF, et al. Selective recognition of biogenic amine hydrochlorides by heteroditopic dihomooxacalix[4]arenes. New J Chem. 2015;39(2):817–821.
  • Teixeira FA, Marcos PM, Ascenso JR, et al. Selective binding of spherical and linear anions by tetraphenyl(thio)urea-Based dihomooxacalix[4]arene receptors. J Org Chem. 2017;82(21):11383–11390.
  • Noruzi EB, Shaabani B, Geremia S, et al. Biological activity of a multidentate calix[4]arene ligand doubly functionalized by 2-hydroxybenzeledene-thiosemicarbazone. Molecules. 2020;25(2):370.
  • Danil de Namor AF, Chahine S, Kowalska D, et al. Selective interaction of lower rim calix[4]arene derivatives and bivalent cations in solution. Crystallographic evidence of the versatile behaviour of acetonitrile in lead(II) and cadmium(II) complexes. J Am Chem Soc. 2002;124:12824–12836.
  • Beer PD, Drew MGB, Leeson PB, et al. Versatile cation complexation by a calix[4]arene tetraamide (L). Synthesis and crystal structure of [ML][ClO4]2·nMeCN (M = FeII, NiII, CuII, ZnII or PbII). J Chem Soc Dalton Trans. 1995;8:1273–1283. DOI:https://doi.org/10.1039/DT9950001273
  • Fonseca JD Síntese e aplicações de calixarenos na complexação de catiões com interesse ambiental. Report of projecto tecnológico I, FCUL, 2009.
  • Marcos PM, Ascenso JR, Lamartine R, et al. NMR conformational studies of tetraalkylated of dihomooxacalix[4]arenes. Tetrahedron. 1997;53:11791–11802.
  • Jaime C, de Mendoza J, Prados P, et al. Carbon-13 NMR chemical shifts. A single rule to determine the conformation of calix[4]arenes. J Org Chem. 1991;56(10):3372–3376.
  • Horvat G, Stilinovic V, Hrenar T, et al. An integrated approach (thermodynamic, structural, and computational) to the study of complexation of alkali-metal cations by a lower-rim calix[4]arene amide derivative in acetonitrile. Inorg Chem. 2012;51(11):6264–6278.
  • Guzzo RN, Rezende MJC, Kartnaller V, et al. Experimental and DFT evaluation of the 1H and 13C NMR chemical shifts for calix[4]arenes. J Mol Struc. 2018;1157:97–105.
  • Beran GJO. Calculating nuclear magnetic resonance chemical shifts from density functional theory: a primer. eMagRes. 2019;8:215–226.
  • Wrackmeyer B, Horchler K, Webb GA. 207Pb-NMR Parameters. In: Webb GA, editor. Annual report on NMR spectroscopy. Vol. 22. San Diego, CA: Academic Press; 1990. p. 249–306.
  • Bauer D, Blumberg M, Köckerling M, et al. A comparative evaluation of calix[4]arene-1,3-crown-6 as a ligand for selected divalent cations of radiopharmaceutical interest. RSC Adv. 2019;9(55):32357–32366.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.