231
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Structure, derivatisation, and metal complexation of p-cyclohexylcalix[4]arene

, , , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 245-252 | Received 01 Jun 2021, Accepted 20 Jul 2021, Published online: 09 Aug 2021

References

  • Gutsche CD. Calixarenes: an Introduction. 2nd ed. Cambridge: RSC Publishing; 2008.
  • D’Alessio D, Sobolev AN, Skelton BW, et al. Lanthanoid “Bottlebrush” clusters: remarkably elongated Metal–Oxo core structures with controllable lengths. J. Am. Chem. Soc. 2014;136(43):15122–15125.
  • Phe RZH, Skelton B, Massi M, et al. Influence of the para -Substituent in lanthanoid complexes of Bis-Tetrazole-Substituted Calix[4]arenes. Eur. J. Inorg. Chem. 2020;2020(1):94–100.
  • Arduini A, Pochini A, Rizzi A, et al. Extension of the hydrophobic cavity of calixi[4]arene by “upper rim” functionalization. Tetrahedron. 1992;48(5):905.
  • Arduini A, McGregor WM, Paganuzzi D, et al. Rigid cone calix[4]arenes as π-donor systems: complexation of organic molecules and ammonium ions in organic media. J. Chem. Soc., Perkin Trans. 2 1996;(5):839–846.
  • Arduini A, Nachtigall FF, Pochini A, et al. Calix[4]arene cavitands: a solid state study on the interactions of their aromatic cavity with neutral organic guests characterised by acid CH3 or CH2 groups. Supramol. Chem. 2000;12(3):273–291.
  • Arduini A, Massera C, Pochini A, et al. Organic guests inclusion by tungsten-calix[4]arene hosts. New J. Chem. 2006;30(6):952–958.
  • Berger B, Bohmer V, Paulus E, et al. Bicyclocalix[4]arenes. Angew. Chem. Int. Ed. 1992;31(1):96–99.
  • Paulus E, Bohmer V, Goldmann H, et al. The crystal and molecular structure of two calix[4]arenes bridged at opposite para positions. J. Chem. Soc. Perkin. Trans. 2 1987;(11):1609–1615.
  • Karotsis G, Teat SJ, Wernsdorfer W, et al. Calix[4]arene-Based Single-Molecule magnets. Angew. Chem. Int. Ed. 2009;48(44):8285–8288.
  • Morohashi N, Nanbu K, Tonosaki A, et al. Comparison of inclusion properties between p-tert-butylcalix[4]arene and p-tert-butylthiacalix[4]arene towards primary alcohols in crystals. CrystEngComm. 2015;17(26):4799–4808.
  • Furphy BM, Harrowfield JM, Ogden MI, et al. Lanthanide ion complexes of the calixarenes. Part 4. Double inclusion by p-t-butylcalix[4]arene (H4L). Crystal structures of [Eu2(HL)2(dmf)4].7dmf (dmf = dimethylformamide) and H4L.dmso (dmso = dimethyl sulphoxide). J. Chem. Soc., Dalton Trans. 1989;(11):2217–2221. DOI:https://doi.org/10.1039/dt9890002217.
  • Sanz S, McIntosh RD, Beavers CM, et al. Calix[4]arene-supported rare earth octahedra. Chem. Commun. 2012;48(10):1449–1451.
  • Bunzli JCG, Froidevaux P, Harrowfield JM. Complexes of lanthanoid salts with macrocyclic ligands. 41. Photophysical properties of lanthanide dinuclear complexes with p-tert-butylcalix[8]arene. Inorg. Chem. 1993;32(15):3306–3311.
  • D’Alessio D, Muzzioli S, Skelton BW, et al. Luminescent lanthanoid complexes of a tetrazole-functionalised calix[4]arene. Dalton Trans. 2012;41(16):4736–4739.
  • Collins EM, Mckervey MA, Madigan E, et al. Chemically modified calix[4]arenes. Regioselective synthesis of 1,3-(distal) derivatives and related compounds. X-Ray crystal structure of a diphenol-dinitrile. J. Chem. Soc., Perkin Trans. 1. 1991;(12):3137–3142.
  • Moris S, Silva N, Saitz C, et al. NANODECORATION OF SINGLE CRYSTALS OF 5,11,17,23-TETRA-TERT-BUTYL-25,27-BIS(CYANOMETHOXY)-26, 28-DIHYDROXYCALIX[4]ARENE. J. Chilean Chem. Soc. 2017;62(4):3772–3778.
  • Dalgarno SJ, Thallapally PK, Barbour LJ, et al. Engineering void space in organic van der Waals crystals: calixarenes lead the way. Chem Soc Rev. 2007;36(2):236–245.
  • Patil RS, Banerjee D, Atwood JL, et al. Gas sorption and storage properties of calixarenes. In: Neri P, Sessler JL, Wang M-X, editors. Calixarenes and beyond. Cham: Springer International Publishing; 2016. p. 1037–1056.
  • Kane CM, Ugono O, Barbour LJ, et al. Many simple molecular cavitands are intrinsically porous (zero-dimensional pore) materials. Chem Mater. 2015;27(21):7337–7354.
  • Sheldrick G. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 2015;71(1):3–8.
  • Parsons S, Flack HD, Wagner T. Use of intensity quotients and differences in absolute structure refinement. Acta Crystallogr. Sect. B: Struct. Sci. 2013;69(3):249–259.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.