307
Views
0
CrossRef citations to date
0
Altmetric
Review

Artificial chiral nanochannels

, , , ORCID Icon &
Pages 283-294 | Received 11 Jun 2021, Accepted 19 Sep 2021, Published online: 14 Dec 2021

References

  • Hazen RM, Sholl DS. Chiral selection on inorganic crystalline surfaces. Nat Mater. 2003;2:367–374.
  • Zhao X, Zang SQ, Chen X. Stereospecific interactions between chiral inorganic nanomaterials and biological systems. Chem Soc Rev. 2020;49:2481–2503.
  • Sung B, de la Cotte A, Grelet E. Chirality-controlled crystallization via screw dislocations. Nat Commun. 2018;9:1405–1410.
  • Lathrop DK, Ervin EN, Barrall GA, et al. Monitoring the escape of DNA from a nanopore using an alternating current signal. JAm ChemSoc. 2010;132(6):1878–1885.
  • Li P, Pan K, Deng J. Nonspherical chiral helical polymer particles with programmable morphology prepared by electrospraying. Nanoscale. 2019;11:23197–23205.
  • Qing G, Zhao S, Xiong Y, et al. Chiral effect at protein/graphene interface: a bioinspired perspective to understand amyloid formation. J Am Chem Soc. 2014;136:10736–10742.
  • Bentley R. Role of sulfur chirality in the chemical processes of biology. Chem Soc Rev. 2005;34:609–624.
  • Maier NM, Franco P, Lindner W. Separation of enantiomers: needs, challenges, perspectives. J Chromatogr A. 2001;906:3–33.
  • Afonso CAM, Crespo JG. Recent advances in chiral resolution through membrane-based approaches. Angew Chem Int Ed. 2004;43:5293–5295.
  • Jirage KB, Martin CR. New developments in membrane-based separations. Trends Biotechnol. 1999;17:197–200.
  • Calcaterra A, D’Acquarica I. The market of chiral drugs: chiral switches versus de novo enantiomerically pure compounds. J Pharmaceut Biomed. 2018;147:323–340.
  • Scriba GKE. Chiral recognition mechanisms in analytical separation sciences. Chromatographia. 2012;75:815–838.
  • Xie SM, Chen XX, Zhang JH, et al. Gas chromatographic separation of enantiomers on novel chiral stationary phases. TrAC-Trend Anal Chem. 2020;124:115808–115827.
  • Yu RB, Quirino JP. Chiral liquid chromatography and capillary electrochromatography: trends from 2017 to 2018. TrAC-Trend Anal Chem. 2019;118:779–792.
  • Zhou M, Long Y, Zhi Y, et al. Preparation and chromatographic evaluation of a chiral stationary phase based on carboxymethyl-β-cyclodextrin for high-performance liquid chromatography. Chinese Chem Lett. 2018;29:1399–1403.
  • Patel DC, Wahab MF, Armstrong DW, et al. Advances in high-throughput and high-efficiency chiral liquid chromatographic separations. J Chromatogr A. 2016;1467:2–18.
  • Chankvetadze B. Recent trends in preparation, investigation and application of polysaccharide-based chiral stationary phases for separation of enantiomers in high-performance liquid chromatography. TrAC-Trend Anal Chem. 2020;122:115709–115721.
  • Fernandes C, Tiritan M, Pinto M. Chiral Separation in preparative scale: a brief overview of membranes as tools for enantiomeric separation. Symmetry. 2017;9:206–224.
  • Van der Ent EM, van’t Riet K, Keurentjes JTF, et al. Design criteria for dense permeation-selective membranes for enantiomer separations. J Membr Sci. 2001;185:207–221.
  • Kocsis I, Sorci M, Vanselous H, et al. Oriented chiral water wires in artificial transmembrane channels. Sci Adv. 2018;4:eaao5603–eaao5612.
  • Chen L, Si W, Zhang L, et al. Chiral selective transmembrane transport of amino acids through artificial channels. J Am Chem Soc. 2013;135:2152–2155.
  • Schneider S, Licsandru ED, Kocsis I, et al. Columnar Self-assemblies of triarylamines as scaffolds for artificial biomimetic channels for ion and for water transport. J Am Chem Soc. 2017;139:3721–3727.
  • August DP, Borsley S, Cockroft SL, et al. Transmembrane ion channels formed by a star of david [2]catenane and a molecular pentafoil knot. J Am Chem Soc. 2020;142:18859–18865.
  • Cao Z, Liu H, Jiang L. Hydrogen-bonding-driven tough ionogels containing spiropyran-functionalized ionic liquids. ACS Appl Mater Interfaces. 2020;2:2359–2365.
  • Fu L, Zhai J. Biomimetic stimuli-responsive nanochannels and their applications. Electrophoresis. 2019;40:2058–2074.
  • Wen L, Sun Z, Han C, et al. Fabrication of layer-by-layer assembled biomimetic nanochannels for highly sensitive acetylcholine sensing. Chemistry. 2013;19:7686–7690.
  • Sun Y, Li S, Zhou Z, et al. Alanine-based chiral metallogels via supramolecular coordination complex platforms: metallogelation induced chirality transfer. J Am Chem Soc. 2018;140:3257–3263.
  • Li RH, Ma J, Sun Y, et al. Tailoring two-dimensional surfaces with pillararenes based host-guest chemistry. Chinese Chem Lett. 2020;31:3095–3101.
  • Hou X, Guo W, Jiang L. Biomimetic smart nanopores and nanochannels. Chem Soc Rev. 2011;40:2385–2401.
  • Zhang S, Boussouar I, Li H. Selective sensing and transport in bionic nanochannel based on macrocyclic host-guest chemistry. Chinese Chem Lett. 2021;32:642–648.
  • Chen Z, Sun Y, Li H. Fabrication of subnanochannels by metal-organic frameworks. Matter. 2021;4:772–774.
  • Qian T, Zhang H, Li X, et al. Efficient gating of ion transport in three-dimensional metal-organic framework sub-nanochannels with confined light-responsive Azobenzene molecules. Angew Chem Int Ed. 2020;59:13051–13056.
  • Sun Y, Cheng SQ, Ma J, et al. Biomimetic nanochannels platform for detecting N-acetylglucosamine analogues. Sensor Actuat B: Chem. 2020;323:128705–128710.
  • Kameta N, Masuda M, Shimizu T. Soft nanotubes acting as confinement effectors and chirality inducers for achiral polythiophenes. Chem Commun. 2016;52:1346–1349.
  • Zhang C, Zhang J, Li W, et al. Anion transmembrane nanochannels from pore-forming helices constructed by the dynamic covalent reaction of dihydrazide and dialdehyde units. Chem Plus Chem. 2021;86:492–495.
  • Pinalli R, Pedrini A, Dalcanale E. Biochemical sensing with macrocyclic receptors. Chem Soc Rev. 2018;47:7006–7026.
  • Yameen B, Ali M, Neumann R, et al. Synthetic proton-gated ion channels via single solid-state nanochannels modified with responsive polymer brushes. Nano Lett. 2009;9:2788–2793.
  • Liu Z, Nalluri SKM, Stoddart JF. Surveying macrocyclic chemistry: from flexible crown ethers to rigid cyclophanes. Chem Soc Rev. 2017;46:2459–2478.
  • Zhu H, Shangguan L, Shi B, et al. Recent progress in macrocyclic amphiphiles and macrocyclic host-based supra-amphiphiles. Mater Chem Front. 2018;2:2152–2174.
  • Sun Y, Ma J, Zhang F, et al. A light-regulated host-guest-based nanochannel system inspired by channelrhodopsins protein. Nat Commun. 2017;8:260–265.
  • Wang R, Sun Y, Zhang F, et al. Temperature-sensitive artificial channels through pillar[5]arene-based host-guest interactions. Angew Chem Int. 2017;56:5294–5298.
  • Sun Y, Zhao H, Boussouar I, et al. Highly sensitive chiral sensing by calix[4]arene-modified silver nanoparticles via dynamic light scattering. Sensor Actuat B: Chem. 2015;216:235–239.
  • Chankvetadze B, Lindner W, Scriba GKE. Enantiomer separations in capillary electrophoresis in the case of equal binding constants of the enantiomers with a chiral selector: commentary on the feasibility of the concept. Anal Chem. 2004;76:4256–4260.
  • Han C, Hou X, Zhang H, et al. Enantioselective recognition in biomimetic single artificial nanochannels. J Am Chem Soc. 2011;133:7644–7647.
  • Jin E, Asada M, Xu Q, et al. Two-dimensional sp2 carbon-conjugated covalent organic frameworks. Science. 2017;357:673–675.
  • Kandambeth S, Mallick A, Lukose B, et al. Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J Am Chem Soc. 2012;134:19524–19527.
  • Yang Y, Faheem M, Wang L, et al. Surface pore engineering of covalent organic frameworks for ammonia capture through synergistic multivariate and open metal site approaches. ACS Cent Sci. 2018;4:748–754.
  • Yuan C, Wu X, Gao R, et al. Nanochannels of covalent organic frameworks for chiral selective transmembrane transport of amino acids. J Am Chem Soc. 2019;141:20187–20197.
  • Xie G, Tian W, Wen L, et al. Chiral recognition of L-tryptophan with beta-cyclodextrin-modified biomimetic single nanochannel. Chem Commun. 2015;51:3135–3138.
  • Liu Y, Li P, Xie L, et al. β-cyclodextrin modified silica nanochannel membrane for chiral separation. J Membr Sci. 2014;453:12–17.
  • Zhang S, Chen X, Sun L, et al. β-cyclodextrin-self-assembled nanochannel membrane for the separation of chiral drugs. ACS Appl Nano Mater. 2020;3:4351–4356.
  • Zhang X, Zhang F, Zhu F, et al. Bioinspired γ-cyclodextrin pseudorotaxane assembly nanochannel for selective amino acid transport. ACS Appl Bio Mater. 2019;2:3607–3612.
  • Ogoshi T, Kanai S, Fujinami S, et al. para-bridged symmetrical pillar[5]arenes: their Lewis acid catalyzed synthesis and host-guest property. J Am Chem Soc. 2008;130:5022–5023.
  • Sathiyajith C, Shaikh RR, Han Q, et al. Biological and related applications of pillar[n]arenes. Chem Commun. 2017;53:677–696.
  • Cheng M, Zhu F, Xu W, et al. Chiral nanochannels of ordered mesoporous silica constructed by a pillar[5]arene-based host-guest system. ACS Appl Mater Interfaces. 2021;13:27305–27312.
  • Lv Y, Xiao C, Yang C. A pillar[5]arene-calix[4]pyrrole enantioselective receptor for mandelate anion recognition. New J Chem. 2018;42:19357–19359.
  • Yu S, Wang Y, Chatterjee S, et al. Pillar[5]arene-functionalized nanochannel platform for detecting chiral drugs. Chinese Chem Lett. 2021;32:179–183.
  • Sun Y, Zhang F, Quan J, et al. A biomimetic chiral-driven ionic gate constructed by pillar[6]arene-based host-guest systems. Nat Commun. 2018;9:2617–2623.
  • Zhu F, Wang W, Zhang F, et al. Selective transmembrane transport of Abeta protein regulated by tryptophan enantiomers. Chem Commun. 2021;57:215–218.
  • Kong J, Mu Y, Xiong Y, et al. Fabrication of both TiO2 nanostructures and cysteine-modified AAO membranes and their application in chiral selective transport of proteins. J Electron Mater. 2018;48:964–971.
  • Huang L, Lin Q, Li Y, et al. Study of the enantioselectivity and recognition mechanism of sulfhydryl-compound-functionalized gold nanochannel membranes. Anal Bioanal Chem. 2019;411:471–478.
  • Huang L, Li Y, Lin Q, et al. Enantioselective permeations of amino acids through L-proline-modified gold nanochannel membrane: an experimental and theoretical study. Amino Acids. 2018;50:1549–1556.
  • Boussouar I, Chen Q, Chen X, et al. Single nanochannel platform for detecting chiral drugs. Anal Chem. 2017;89:1110–1116.
  • Salvia MV, Salassa G, Rastrelli F, et al. Turning supramolecular receptors into chemosensors by nanoparticle-assisted “NMR chemosensing”. J Am Chem Soc. 2015;137:11399–11406.
  • Shi F, Zhou J, Zhang L, et al. Cu2+ ion responsive solvent-free quantum dots. Small. 2014;10:3901–3906.
  • Martin MN, Allen AJ, MacCuspie RI, et al. Dissolution, agglomerate morphology, and stability limits of protein-coated silver nanoparticles. Langmuir. 2014;30:11442–11452.
  • MacLeod MJ, Johnson JA. PEGylated N-heterocyclic carbene anchors designed to stabilize gold nanoparticles in biologically relevant media. J Am Chem Soc. 2015;137:7974–7977.
  • Sun Z, Zhang F, Zhang X, et al. Chiral recognition of Arg based on label-free PET nanochannel. Chem Commun. 2015;51:4823–4826.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.