1,442
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Supramolecular methods: the 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) transport assay

ORCID Icon, , , , , & show all
Pages 325-344 | Received 21 Aug 2021, Accepted 24 Oct 2021, Published online: 17 Nov 2021

References

  • Busschaert N, Wenzel M, Light ME, et al. Structure–activity relationships in tripodal transmembrane anion transporters: the effect of fluorination. J Am Chem Soc. 2011;133(35):14136–14148.
  • Gadsby DC. Ion channels versus ion pumps: the principal difference, in principle. Nat Rev Mol Cell Biol. 2009;10(5):344–352.
  • Strange K, Emma F, Jackson PS. Cellular and molecular physiology of volume-sensitive anion channels. Am J Physiol Cell Physiol. 1996;270(3):C711–C730.
  • Kim J-B. Channelopathies. Korean J Pediatr. 2014;57(1):1.
  • Sheppard DN, Welsh MJ. Structure and function of the CFTR chloride channel. Physiol Rev. 1999;79(1):S23–S45.
  • Ko S-K, Kim SK, Share A, et al. Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells. Nat Chem. 2014;6(10):885–892.
  • Li H, Valkenier H, Thorne AG, et al. Anion carriers as potential treatments for cystic fibrosis: transport in cystic fibrosis cells, and additivity to channel-targeting drugs. Chem Sci. 2019;10(42):9663–9672.
  • Chen L, Berry SN, Wu X, et al. Advances in anion receptor chemistry. Chem. 2020;6(1):61–141.
  • Cossu C, Fiore M, Baroni D, et al. Anion-transport mechanism of a triazole-bearing derivative of prodigiosine: a candidate for cystic fibrosis therapy. Front Pharmacol. 2018;9:852.
  • Lisbjerg M, Valkenier H, Jessen BM, et al. Biotin[6]uril Esters: chloride-selective transmembrane anion carriers employing C–H···Anion interactions. J Am Chem Soc. 2015;137(15):4948–4951.
  • McNally BA, Koulov AV, Smith BD, et al. A fluorescent assay for chloride transport; identification of a synthetic anionophore with improved activity. Chem Commun. 2005;8:1087–1089. DOI:10.1039/b414589e
  • Schalley CA. Analytical methods in supramolecular chemistry. Vol. 1. Weinheim, Germany: Wiley-VCH; 2012.
  • Daleke DL, Hong K, Papahadjopoulos D. Endocytosis of liposomes by macrophages: binding, acidification and leakage of liposomes monitored by a new fluorescence assay. Biochim Biophys Acta. 1990;1024(2):352–366.
  • Jowett LA, Gale PA. Supramolecular methods: the chloride/nitrate transmembrane exchange assay. Supramol Chem. 2019;31(5):297–312.
  • Wu X, Gale PA. Measuring anion transport selectivity: a cautionary tale. Chem Commun. 2021;57(33):3979–3982.
  • Wu X, Gale PA. Small-molecule uncoupling protein mimics: synthetic anion receptors as fatty acid-activated proton transporters. J Am Chem Soc. 2016;138(50):16508–16514.
  • Kamp F, Zakim D, Zhang F, et al. Fatty acid flip-flop in phospholipid bilayers is extremely fast. Biochemistry. 1995;34(37):11928–11937.
  • Wu X, Small JR, Cataldo A, et al. Voltage‐switchable HCl transport enabled by lipid headgroup–transporter interactions. Angew Chem Int Ed. 2019;58(42):15142–15147.
  • Wu X, Judd LW, Howe EN, et al. Nonprotonophoric electrogenic Cl− transport mediated by valinomycin-like carriers. Chem. 2016;1(1):127–146.
  • Gorteau V, Bollot G, Mareda J, et al. Rigid-rod anion–π slides for multiion hopping across lipid bilayers. Org Biomol Chem. 2007;5(18):3000–3012.
  • Gilchrist AM, Chen L, Wu X, et al. Tetrapodal Anion transporters. Molecules. 2020;25(21):5179.
  • Adriaenssens L, Estarellas C, Vargas Jentzsch A, et al. Quantification of Nitrate−π interactions and selective transport of nitrate using Calix[4]pyrroles with two aromatic walls. J Am Chem Soc. 2013;135(22):8324–8330.
  • Dawson RE, Hennig A, Weimann DP, et al. Experimental evidence for the functional relevance of anion–π interactions. Nat Chem. 2010;2(7):533–538.
  • Jentzsch AV, Emery D, Mareda J, et al. Transmembrane anion transport mediated by halogen-bond donors. Nat Commun. 2012;3(1):1–8.
  • Lee LM, Tsemperouli M, Poblador-Bahamonde AI, et al. Anion transport with pnictogen bonds in direct comparison with chalcogen and halogen bonds. J Am Chem Soc. 2019;141(2):810–814.
  • Jentzsch AV, Emery D, Mareda J, et al. Ditopic ion transport systems: anion–π interactions and halogen bonds at work. Angew Chem. 2011;123(49):11879–11882.
  • Jentzsch AV, Matile S. Transmembrane halogen-bonding cascades. J Am Chem Soc. 2013;135(14):5302–5303.
  • Saha T, Gautam A, Mukherjee A, et al. Chloride transport through supramolecular barrel-rosette ion channels: lipophilic control and apoptosis-inducing activity. J Am Chem Soc. 2016;138(50):16443–16451.
  • Saha T, Hossain MS, Saha D, et al. Chloride-mediated apoptosis-inducing activity of bis (sulfonamide) anionophores. J Am Chem Soc. 2016;138(24):7558–7567.
  • Saha T, Dasari S, Tewari D, et al. Hopping-mediated anion transport through a mannitol-based rosette ion channel. J Am Chem Soc. 2014;136(40):14128–14135.
  • Burade SS, Saha T, Bhuma N, et al. Self-assembly of fluorinated sugar amino acid derived α, γ-cyclic peptides into transmembrane anion transport. Org Lett. 2017;19(21):5948–5951.
  • Shinde SV, Talukdar P. Transmembrane H+/Cl− cotransport activity of bis(amido)imidazole receptors. Org Biomol Chem. 2019;17(18):4483–4490.
  • Martínez‐Crespo L, Sun‐Wang JL, Ferreira P, et al. Influence of the insertion method of Aryl‐extended Calix[4]pyrroles into liposomal membranes on their properties as Anion carriers. Chem Eur J. 2019;25(18):4775.
  • Li Z, Deng L-Q, Chen Y, et al. Efficient transmembrane anion transport mediated by a bis(imidazolyl)-functionalized bis(choloyl) conjugate. Bioorg Med Chem Lett. 2016;26(15):3665–3668.
  • Yu X-H, Hong X-Q, Chen W-H. Fluorinated bisbenzimidazoles: a new class of drug-like anion transporters with chloride-mediated, cell apoptosis-inducing activity. Org Biomol Chem. 2019;17(6):1558–1571.
  • Lu Y-M, Deng L-Q, Huang X, et al. Synthesis and anionophoric activities of dimeric polyamine–sterol conjugates: the impact of rigid vs. flexible linkers. Org Biomol Chem. 2013;11(47):8221–8227.
  • Li Z, Chen Y, Yuan D-Q, et al. Synthesis of a dimeric 3α-hydroxy-7α,12α-diamino-5β-cholan-24-oate conjugate and its derivatives, and the effect of lipophilicity on their anion transport efficacy. Org Biomol Chem. 2017;15(13):2831–2840.
  • Cai X-J, Li Z, Chen W-H. Tripodal squaramide conjugates as highly effective transmembrane anion transporters. Bioorg Med Chem Lett. 2017;27(9):1999–2002.
  • Akhtar N, Saha A, Kumar V, et al. Diphenylethylenediamine-based potent anionophores: transmembrane chloride ion transport and apoptosis inducing activities. ACS Appl Mater Interfaces. 2018;10(40):33803–33813.
  • Das S, Biswas O, Akhtar N, et al. Multi-stimuli controlled release of a transmembrane chloride ion carrier from a sulfonium-linked procarrier. Org Biomol Chem. 2020;18(45):9246–9252.
  • Clarke HJ, Wu X, Light ME, et al. Selective anion transport mediated by strap-extended calixpyrroles. J Porphyr Phthalocyanines. 2020;24( 01n03):473–479.
  • Jowett LA, Howe EN, Soto-Cerrato V, et al. Indole-based perenosins as highly potent HCl transporters and potential anti-cancer agents. Sci Rep. 2017;7(1):1–11.
  • Jowett LA, Ricci A, Wu X, et al. Investigating the influence of steric hindrance on selective anion transport. Molecules. 2019;24(7):1278.
  • Spooner MJ, Li H, Marques I, et al. Fluorinated synthetic anion carriers: experimental and computational insights into transmembrane chloride transport. Chem Sci. 2019;10(7):1976–1985.
  • Carreira-Barral I, Mielczarek M, Alonso-Carrillo D, et al. Click-tambjamines as efficient and tunable bioactive anion transporters. Chem Commun. 2020;56(21):3218–3221.
  • Picci G, Carreira-Barral I, Alonso-Carrillo D, et al. Simple isophthalamides/dipicolineamides as active transmembrane anion transporters. Supramol Chem. 2020;32(2):112–118.
  • Gabba M, Frallicciardi J, van’t Klooster J, et al. Weak acid permeation in synthetic lipid vesicles and across the yeast plasma membrane. Biophys J. 2020;118(2):422–434.
  • Avanti Polar Lipids I. https://avantilipids.com/product/840051 (Cited 2021 Jun 6).
  • Avanti Polar Lipids I. https://avantilipids.com/product/241601 (Cited 2021 Jul 18).
  • Saha T, Sengupta A, Hazra P, et al. In vitro sensing of Cu+ through a green fluorescence rise of pyranine. Photochem Photobiol Sci. 2014;13(10):1427–1433.
  • Dansby-Sparks RN, Jin J, Mechery SJ, et al. Fluorescent-dye-doped sol−gel sensor for highly sensitive carbon dioxide gas detection below atmospheric concentrations. Anal Chem. 2010;82(2):593–600.
  • Kocincova AS, Borisov SM, Krause C, et al. Fiber-optic microsensors for simultaneous sensing of oxygen and pH, and of oxygen and temperature. Anal Chem. 2007;79(22):8486–8493.
  • Amdursky N. Photoacids as a new fluorescence tool for tracking structural transitions of proteins: following the concentration-induced transition of bovine serum albumin. Phys Chem Chem Phys. 2015;17(47):32023–32032.
  • Simón‐Vázquez R, Lazarova T, Perálvarez‐Marín A, et al. Cross‐linking of transmembrane helices reveals a rigid‐body mechanism in bacteriorhodopsin transport. Angew Chem Int Ed. 2009;48(45):8523–8525.
  • Spry D, Goun A, Fayer MD. Deprotonation dynamics and stokes shift of pyranine (HPTS). J Phys Chem A. 2007;111(2):230–237.
  • Wolfbeis OS, Fürlinger E, Kroneis H, et al. Fluorimetric analysis. Fresenius’ Zeitschrift für Analytische Chemie. 1983;314(2):119–124.
  • Davis JT, Gale PA, Quesada R. Advances in anion transport and supramolecular medicinal chemistry. Chem Soc Rev. 2020;49(16):6056–6086.
  • Han J, Burgess K. Fluorescent indicators for intracellular pH. Chem Rev. 2010;110(5):2709–2728.
  • Wencel D, Abel T, McDonagh C. Optical chemical pH sensors. Anal Chem. 2014;86(1):15–29.
  • Ulrich S, Osypova A, Panzarasa G, et al. Pyranine‐modified amphiphilic polymer conetworks as fluorescent ratiometric pH sensors. Macromol Rapid Commun. 2019;40(21):1900360.
  • Avanti Polar Lipids I. https://avantilipids.com/divisions/equipment-products/mini-extruder-extrusion-technique (Cited 2021 Oct 14).
  • Yokouchi Y, Tsunoda T, Imura T, et al. Effect of adsorption of bovine serum albumin on liposomal membrane characteristics. Colloids Surf B. 2001;20(2):95–103.
  • Wang A, Miller CC, Szostak JW. Core-shell modeling of light scattering by vesicles: effect of size, contents, and lamellarity. Biophys J. 2019;116(4):659–669.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.