426
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Pillar[4]arene[1]quinone-based pseudo[3]rotaxanes by cooperative Host-Guest binding

, , , &
Pages 390-399 | Received 26 Oct 2021, Accepted 29 Nov 2021, Published online: 01 Feb 2022

References

  • Amano S, Fielden SDP, Leigh DA. A catalysis-driven artificial molecular pump. Nature. 2021;594:529–534.
  • Erbas-Cakmak S, Leigh DA, McTernan CT, et al. Artificial Molecular Machines. Chem Rev. 2015;115:10081–10206.
  • Feng Y, Ovalle M, Seale JSW, et al. Molecular pumps and motors. J Am Chem Soc. 2021;143:5569–5591.
  • Stoddart JF. Mechanically interlocked molecules (mims)-molecular shuttles, switches, and machines (nobel lecture). Angew Chem Int Ed. 2017;56:11094–11125.
  • Mena-Hernando S, Pérez EM. Mechanically interlocked materials. Rotaxanes and catenanes beyond the small molecule. Chem Soc Rev. 2019;48:5016–5032.
  • Xue M, Yang Y, Chi X, et al. Development of Pseudorotaxanes and Rotaxanes: from Synthesis to Stimuli-Responsive Motions to Applications. Chem Rev. 2015;115:7398–7501.
  • Arunachalam M, Gibson HW. Prog. Polym Sci. 2014;39:1043–1073.
  • Liu Z, Nalluri SKM, Stoddart JF. Surveying macrocyclic chemistry: from flexible crown ethers to rigid cyclophanes. Chem Soc Rev. 2017;46:2459–2478.
  • Zhang H, Liu Z, Zhao Y. Pillararene-based self-assembled amphiphiles. Chem Soc Rev. 2018;47:5491–5528.
  • Fang Y, Deng Y, Dehaen W. Tailoring pillararene-based receptors for specific metal ion binding: from recognition to supramolecular assembly. Coord Chem Rev. 2020;415:213313.
  • Zhang H, Liu Z, Xin F, et al. Metal-ligated pillararene materials: from chemosensors to multidimensional self-assembled architectures. Coord Chem Rev. 2020;420:213425.
  • Li Z, Yang Y-W. Functional materials with pillarene struts. Acc Mater Res. 2021;2:292–305.
  • Wang K, Jordan JH, Velmurugan K, et al. Role of functionalized pillararene architectures in supramolecular catalysis. Angew Chem Int Ed. 2021;60:9205–9214.
  • Lou X-Y, Yang Y-W Pillar[n]arene-based supramolecular switches in solution and on surfaces . Adv Mater. 2020;32:2003263.
  • Sathiyajith C, Shaikh RR, Han Q, et al. Biological and related applications of pillar[n]arenes. Chem Commun. 2017;53:677–696.
  • Boominathan M, Kiruthika J, Arunachalam M. Construction of anion-responsive crosslinked polypseudorotaxane based on molecular recognition of pillar[5]arene. J Polym Sci. 2019;57:1508–1515.
  • Li E, Jie K, Fang Y, et al. Transformation of nonporous adaptive pillar[4]arene[1]quinone crystals into fluorescent crystals via multi-step solid–vapor postsynthetic modification for fluorescence turn-on sensing of ethylenediamine. J Am Chem Soc. 2020;142:15560–15568.
  • Li Q, Zhu H, Huang F. Alkyl chain length-selective vapor-induced fluorochromism of pillar[5]arene-based nonporous adaptive crystals. J Am Chem Soc. 2019;141:13290–13294.
  • Wu Y, Zhou J, Li E, et al. Selective separation of methylfuran and dimethylfuran by nonporous adaptive crystals of pillararenes. J Am Chem Soc. 2020;142:19722–19730.
  • Sheng X, Li E, Zhou Y, et al. Separation of 2-Chloropyridine/3-Chloropyridine by nonporous adaptive crystals of pillararenes with different substituents and cavity sizes. J Am Chem Soc. 2020;142:6360–6364.
  • Zhu W, Li E, Huang F. Highly selective separation of isopropylbenzene and α-methylstyrene by nonporous adaptive crystals of perbromoethylated pillararene via vapor- and liquid-phase adsorptions. ACS Appl Mater Interfaces. 2021;13:7370–7376.
  • Wang M, Zhou J, Li E, et al. Separation of monochlorotoluene isomers by nonporous adaptive crystals of perethylated Pillar[5]arene and Pillar[6]arene. J Am Chem Soc. 2019;141:17102–17106.
  • Zhu W, Li E, Zhou J, et al. Highly selective removal of heterocyclic impurities from toluene by nonporous adaptive crystals of perethylated pillar[6]arene. Mater Chem Front. 2020;4:2325–2329.
  • Gao L, Han C, Zheng B, et al. Formation of a pillar[5]arene-based [3]pseudorotaxane in solution and in the solid state. Chem Commun. 2013;49:472–474.
  • Shao L, Hua B, Liu J, et al. Construction of a [2]pseudorotaxane and a [3]pseudorotaxane based on perbromoethylated pillar[5]arene/pyridinium iodide ion-pair recognition. Chem Commun. 2019;55:4527–4530.
  • Dasgupta S, Chowdhury A, Mukherjee PS. Binding of carboxylatopillar[5]arene with alkyl and aryl ammonium salts in aqueous medium. RSC Adv. 2015;5:85791–85798.
  • Chen R, Jiang H, Gu H, et al. A pH-responsive fluorescent [5]pseudorotaxane formed by self-assembly of cationic water-soluble pillar[5]arenes and a tetraphenylethene derivative. Chem Commun. 2015;51:12220–12223.
  • Guo H, Yan X, Lu B, et al. Pillar[5]arene-based supramolecular assemblies with two-step sequential fluorescence enhancement for mitochondria-targeted cell imaging. J Mater Chem C. 2020;8:15622–15625.
  • Xia B, He J, Abliz Z, et al. Synthesis of a pillar[5]arene dimer by co-oligomerization and its complexation with n-octyltrimethyl ammonium hexafluorophosphate. Tetrahedron Lett. 2011;52:4433–4436.
  • Chi X, Yu G, Shao L, et al. A Dual-Thermoresponsive Gemini-Type Supra-amphiphilic Macromolecular [3]Pseudorotaxane Based on Pillar[10]arene/Paraquat Cooperative Complexation. J Am Chem Soc. 2016;138:3168–3174.
  • Wang H, Xing H, Ji X. A multiple-responsive water-soluble [3]pseudorotaxane constructed by pillar[5]arene-based molecular recognition and disulfide bond connection. RSC Adv. 2016;6:740–744.
  • Sun S, Hu X-Y, Chen D, et al. Pillar[5]arene-based side-chain polypseudorotaxanes as an anion-responsive fluorescent sensor. Polym Chem. 2013;4:2224–2229.
  • Boominathan M, Arunachalam M. Formation of supramolecular polymer network and single-chain polymer nanoparticles via Host–Guest complexation from pillar[5]arene pendant polymer. ACS Appl Polym Mater. 2020;2:4368–4372.
  • Strutt NL, Zhang H, Schneebeli ST, et al. Acc Chem Res. 2014;47:2631–2642.
  • Ogoshi T, Akutsu T, Shimada Y, et al. Redox-responsive host–guest system using redox-active pillar[5]arene containing one benzoquinone unit. Chem Commun. 2016;52:6479–6481.
  • Sheng X, Li E, Huang F Construction of pillar[4]arene[1]quinone–1,10-dibromodecane pseudorotaxanes in solution and in the solid state . Beilstein J Org Chem. 2020;16:2954–2959.
  • Han C, Zhang Z, Yu G, et al. Syntheses of a pillar[4]arene[1]quinone and a difunctionalized pillar[5]arene by partial oxidation. Chem Commun. 2012;48:9876–9878.
  • Shurpik DN, Padnya PL, Makhmutova LI, et al. Selective stepwise oxidation of 1,4-decamethoxypillar[5]arene. New J Chem. 2015;39:9215–9220.
  • Jie K, Zhou Y, Sun Q, et al. Mechanochemical synthesis of pillar[5]quinone derived multi-microporous organic polymers for radioactive organic iodide capture and storage. Nat Commun. 2020;11:1086.
  • Li E, Jie K, Zhou Y, et al. Post-Synthetic modification of nonporous adaptive crystals of pillar[4]arene[1]quinone by capturing vaporized amines. J Am Chem Soc. 2018;140:15070–15079.
  • Kiruthika J, Srividhya S, Arunachalam M. Anion-Responsive pseudo[3]rotaxane from a difunctionalized pillar[4]arene[1]quinone and a bis-imidazolium cation. Org Lett. 2020;22:7831–7836.
  • Ogoshi T, Kanai S, Fujinami S, Yamagishi, T-a, Nakamoto, Y para-bridged symmetrical pillar[5]arenes: Their lewis acid catalyzed synthesis and host–guest property , J Am Chem Soc. 2008;130:5022–5023.
  • Zhang Y-M, Li Y-F, Zhong K-P, et al. A novel pillar[5]arene-based supramolecular organic framework gel to achieve an ultrasensitive response by introducing the competition of cation π and π π interactions. Soft Matter. 2018;14:3624–3631.
  • Ng CKL, Singhal V, Widmer F, et al. Synthesis, antifungal and haemolytic activity of a series of bis(pyridinium)alkanes. Bio org Med Chem.2007;15:3422–3429.
  • Hynes MJ. EQNMR: a computer program for the calculation of stability constants from nuclear magnetic resonance chemical shift data. J Chem Soc Dalton trans. 1993;2:311–312. DOI:10.1039/dt9930000311
  • Strohalm M, Kavan D, Novák P, Volný, M, Havlíček, V mMass 3: A cross-platform software environment for precise analysis of mass spectrometric data Anal Chem. 2010;82(11):4648–4651.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.