148
Views
0
CrossRef citations to date
0
Altmetric
Brief Report

Stimuli-responsive supramolecular dye inclusion complex constructed by self-assembly of inverted cucurbit[7]uril and thioflavin T

, , , &
Pages 559-567 | Received 08 Apr 2022, Accepted 30 Jul 2022, Published online: 08 Aug 2022

References

  • Li J, Yim D, Jang WD, et al. Recent progress in the design and applications of fluorescence probes containing crown ethers. Chem Soc Rev. 2017;46(9):2437–2458.
  • Crini G. Review: a history of cyclodextrins. Chem Rev. 2014;114(21):10940–10975.
  • Dsouza RN, Pischel U, Nau WM. Fluorescent dyes and their supramolecular host/guest complexes with macrocycles in aqueous solution. Chem Rev. 2011;111(12):7941–7980.
  • Isaacs L. Stimuli responsive systems constructed using cucurbit[n]uril-type molecular containers. Acc Chem Res. 2014;47(7):2052–2062.
  • Xue M, Yang Y, Chi X, et al. Pillararenes, a new class of macrocycles for supramolecular chemistry. Acc Chem Res. 2012;45(8):1294–1308.
  • Yang H, Yuan B, Zhang X, et al. Supramolecular chemistry at interfaces: host–guest interactions for fabricating multifunctional biointerfaces. Acc Chem Res. 2014;47(7):2106–2115.
  • Huang Y, Gao RH, Liu M, et al. Cucurbit[n]uril-based supramolecular frameworks assembled through outer-surface interactions. Angew Chem Int Ed. 2021;60(28):15166–15191.
  • Tang X, Huang Z, Chen H, et al. Supramolecularly catalyzed polymerization: from consecutive dimerization to polymerization. Angew Chem Int Ed. 2018;57(28):8545–8549.
  • Jiao Y, Tang B, Zhang Y, et al. Highly efficient supramolecular catalysis by endowing the reaction intermediate with adaptive reactivity. Angew Chem Int Ed. 2018;57(21):6077–6081.
  • Sun C, Wang Z, Yue L, et al. Supramolecular induction of mitochondrial aggregation and fusion. J Am Chem Soc. 2020;142(39):16523–16527.
  • Huang Q, Cheng Q, Zhang X, et al. Alleviation of polycation-induced blood coagulation by the formation of polypseudorotaxanes with macrocyclic cucurbit[7]uril. ACS Appl Bio Mater. 2018;1(3):544–548.
  • Xu H, Lu H, Zhang Q, et al. Surfactant-induced chirality transfer, amplification and inversion in a cucurbit[8]uril–viologen host–guest supramolecular system. J Mater Chem C. 2022;10(7):2763–2774.
  • Su T, Liu YH, Chen Y, et al. A tunable phosphorescence supramolecular switch by an anthracene photoreaction in aqueous solution. J Mater Chem C. 2022;10(7):2623–2630.
  • Sun C, Wang Z, Yue L, et al. ROS-initiated chemiluminescence-driven payload release from macrocycle-based azo-containing polymer nanocapsules. J Mater Chem B. 2020;8(38):8878–8883.
  • Zhang W, Zhang YM, Li SH, et al. Tunable nanosupramolecular aggregates mediated by host-guest complexation. Angew Chem. 2016;128(38):1–6.
  • Gao ZZ, Zhang J, Sun N, et al. Hyperbranched supramolecular polymer constructed from twisted cucurbit[14]uril and porphyrin via host–guest interactions. Org Chem Front. 2016;3(9):1144–1148.
  • Gao ZZ, Xu YY, Wang ZK, et al. Porous [Ru(bpy)3]2+-cored metallosupramolecular polymers: preparation and recyclable photocatalysis for the formation of amides and 2-Diazo-2-phenylacetates. ACS Appl Polym Mater. 2020;2(11):4885–4892.
  • Gao ZZ, Wang ZK, Wei L, et al. Water-soluble 3D covalent organic framework that displays an enhanced enrichment effect of photosensitizers and catalysts for the reduction of protons to H2. ACS Appl Mater Interfaces. 2020;12(1):1404–1411.
  • Zhang J, Tang Q, Gao ZZ, et al. Supramolecular assembly mediated by metal ions in aqueous solution and its application in their analysis. Chem Eur J. 2017;23(42):10092–10099.
  • Nie H, Wei Z, Ni XL, et al. Assembly and applications of macrocyclic-confinement-derived supramolecular organic luminescent emissions from cucurbiturils. Chemical Reviews. 2022;122(9):9032–9077.
  • Isaacs L, Park SK, Liu S, et al. The inverted cucurbit[n]uril family. J Am Chem Soc. 2005;127(51):18000–18001.
  • Li Q, Zhang YQ, Zhu QJ, et al. Coordination of alkaline earth metal ions in the inverted cucurbit[7]uril supramolecular assemblies formed in the presence of [ZnCl4]2- and [CdCl4]2-. Chem Asian J. 2015;10(5):1159–1164.
  • Qiu SC, Li Q, Chen K, et al. Absorption properties of an inverted cucurbit[7]uril-based porous coordination polymer induced by [ZnCl4]2− anions. Inorg Chem Commun. 2016;72:50–53.
  • Li Q, Qiu SC, Zhang YQ, et al. Supramolecular assemblies constructed from inverted cucurbit[7]uril and lanthanide cations: synthesis, structure and sorption properties. RSC Adv. 2016;6(81):77805–77810.
  • Gao ZZ, Bai D, Chen LX, et al. A study of the interaction between inverted cucurbit[7]uril and symmetric viologens. RSC Adv. 2017;7(1):461–467.
  • Gao ZZ, Yang LG, Bai D, et al. Interaction of inverted cucurbit[7]uril with N,N’-dibenzyl-4,4’-pyridine chloride. Chem J Chinese U. 2017;38(2):212–216.
  • Wang HY, Zhou Y, Lu JH, et al. Supramolecular drug inclusion complex of capecitabine with cucurbit[7]uril and inverted cucurbit[7]uril. Arab J Chem. 2020;13(1):2271–2275.
  • Li Q, Qiu SC, Lu JH, et al. Host–guest interactions in an inverted cucurbit[7]uril with α, ω-alkyldiammonium guests. RSC Adv. 2015;5(84):68914–68918.
  • Shan PH, Zhang ZR, Bai D, et al. Supramolecular self-assemblies of inverted cucurbit[7]uril with biogenic amines. New J Chem. 2019;43(1):407–412.
  • Gao ZZ, Kan JL, Xiao X, et al. Binding and selectivity of essential amino acid guests to the inverted cucurbit[7]uril host. ACS Omega. 2017;2(9):5633–5640.
  • Bai D, Zhou Y, Lu J, et al. Study of the interaction between two kinds of cucurbit[7]urils and 3-(2-Naphthyl)-alanine. Chin J Org Chem. 2018;38(6):1477–1483.
  • Gao ZZ, Kan JL, Tao Z, et al. A stimuli-responsive supramolecular assembly between inverted cucurbit[7]uril and hemicyanine dye. New J Chem. 2018;42(18):15420–15426.
  • Yang M, Huang Y, Liu M, et al. Specific recognition of hg2+ and other cations by a hoechst33258@inverted cucurbit[7]uril fluorescence probe using different pH media. ChemistrySelect. 2019;4(32):9433–9439.
  • Yang MX, Tang Q, Yang M, et al. pH-stimulus response dye-cucurbituril sensor for amino acids in aqueous solution. Spectrochim Acta Part A. 2020;230:118076.
  • Choudhury SD, Mohanty J, Pal H, et al. Cooperative metal ion binding to a cucurbit[7]uril-thioflavin T complex: demonstration of a stimulus-responsive fluorescent supramolecular capsule. J Am Chem Soc. 2010;132(4):1395–1401.
  • Zhu JH, Li CY, Liu SP, et al. Calcium-stimulus-responsive cucurbit[7]uril–thioflavin T supramolecular nanocapsule for fluoride sensing and logic operation. Sens Actuators B. 2014;198:255–259.
  • Choudhury SD, Mohanty J, Upadhyaya HP, et al. Photophysical studies on the noncovalent interaction of thioflavin t with cucurbit[n]uril macrocycles. J Phys Chem B. 2009;113(7):1891–1898.
  • Bhasikuttan AC, Pal H, Mohanty J. Cucurbit[n]uril based supramolecular assemblies: tunable physico-chemical properties and their prospects. Chem Commun. 2011;47(36):9959–9971.
  • Mohanty J, Choudhury SD, Upadhyaya HP, et al. Control of the supramolecular excimer formation of thioflavin T within a cucurbit[8]uril host: a fluorescence on/off mechanism. Chem Eur J. 2009;15(21):5215–5219.
  • Cai YQ, Li G. Supramolecular tandem assay for tyrosinase based on cucurbit[8]uril induced peptide inclusion. Dyes Pigm. 2021;195:109734.
  • Bhasikuttan AC, Choudhury SD, Pal H, et al. Supramolecular assemblies of thioflavin T with cucurbiturils: prospects of cooperative and competitive metal ion binding. Isr J Chem. 2011;51(5–6):634–645.
  • Song GX, Tang Q, Huang Y, et al. A host–guest complexation based fluorescent probe for the detection of paraquat and diquat herbicides in aqueous solutions. RSC Adv. 2015;5(121):100316–100321.
  • Zakharova GV, Konstantinov RR, Odinokov AV, et al. Effect of a peptide modeling the nicotinic receptor binding site on the spectral and luminescent properties of dye complexes with cucurbit[8]uril. High Energy Chem. 2016;50(2):127–131.
  • Wang CH, Tang Q, Zhang J, et al. Alkaline earth cation-mediated photoluminescent complexes of thioflavin T with twisted cucurbit[14]uril. New J Chem. 2018;42(11):9244–9251.
  • Fan Y, Gao RH, Huang Y, et al. Supramolecular fluorescence probe based on twisted cucurbit[14]uril for sensing fungicide flusilazole. Front Chem. 2019;7:154.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.