49
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Mouldable multicomponent low molecular weight supergelators

, , &
Received 05 Mar 2024, Accepted 10 May 2024, Published online: 23 May 2024

References

  • Draper ER, Adams DJ. Low-molecular-weight gels: the state of the art. Chem. 2017;3(3):390–410. doi: 10.1016/j.chempr.2017.07.012
  • Ghanbari E, Picken SJ, van Esch JH. Design rules for binary bisamide gelators: toward gels with tailor-made structures and properties. Langmuir. 2023;39(34):12182–12195. doi: 10.1021/acs.langmuir.3c01487
  • Liu C, Ye K, Xiao H, et al. Versatile robust organogels based on a low molecular weight gelator of phenylquinolinylacrylonitrile. J Mater Chem C. 2023;11(20):6635–6641. doi: 10.1039/D3TC00740E
  • Dhibar S, Pal S, Karmakar K, et al. Two novel low molecular weight gelator-driven supramolecular metallogels efficient in antimicrobial activity applications. RSC Adv. 2023;13(47):32842–32849. doi: 10.1039/D3RA05019J
  • Tovar JD. Supramolecular construction of optoelectronic biomaterials. Acc Chem Res. 2013;46(7):1527–1537. doi: 10.1021/ar3002969
  • Ajayaghosh A, Praveen VK. π -organogels of self-assembled p -phenylenevinylenes: soft materials with distinct size, shape, and functions. Acc Chem Res. 2007;40(8):644–656. doi: 10.1021/ar7000364
  • Babu SS, Praveen VK, Ajayaghosh A. Functional π-gelators and their applications. Chem Rev. 2014;114(4):1973–2129. doi: 10.1021/cr400195e
  • Mukhopadhyay P, Iwashita Y, Shirakawa M, et al. Spontaneous colorimetric sensing of the positional isomers of dihydroxynaphthalene in a 1D organogel matrix. Angew Chem Int Ed. 2006;45(10):1592–1595. doi: 10.1002/anie.200503158
  • Bardelang D, Zaman MB, Moudrakovski IL, et al. Interfacing supramolecular gels and quantum dots with ultrasound: smart photoluminescent dipeptide gels. Adv Mater. 2008;20(23):4517–4520. doi: 10.1002/adma.200801812
  • Annabi N, Tamayol A, Uquillas JA, et al. 25th anniversary article: rational design and applications of hydrogels in regenerative medicine. Adv Mater. 2014;26(1):85–124. doi: 10.1002/adma.201303233
  • Tangsombun C, Smith DK. Fabricating shaped and patterned supramolecular multigelator objects via diffusion-adhesion gel assembly. J Am Chem Soc. 2023;145(44):24061–24070. doi: 10.1021/jacs.3c07376
  • Díaz DD, Kühbeck D, Koopmans RJ. Stimuli-responsive gels as reaction vessels and reusable catalysts. Chem Soc Rev. 2011;40(1):427–448. doi: 10.1039/C005401C
  • Escuder B, Rodríguez-Llansola F, Miravet JF. Supramolecular gels as active media for organic reactions and catalysis. New J Chem. 2010;34(6):1044–1054. doi: 10.1039/b9nj00764d
  • Berdugo C, Escuder B, Miravet JF. Structural insight into the aggregation of L-prolyl dipeptides and its effect on organocatalytic performance. Org Biomol Chem. 2015;13(2):592–600. doi: 10.1039/C4OB02003K
  • Slavík P, Trowse BR, O’Brien P, et al. Organogel delivery vehicles for the stabilization of organolithium reagents. Nat Chem. 2023;15(3):319–325. doi: 10.1038/s41557-023-01136-x
  • Chivers PRA, Smith DK. Shaping and structuring supramolecular gels. Nat Rev Mater. 2019;4(7):463–478. doi: 10.1038/s41578-019-0111-6
  • Tang JD, Mura C, Lampe KJ. Stimuli-responsive, pentapeptide, nanofiber hydrogel for tissue engineering. J Am Chem Soc. 2019;141(12):4886–4899. doi: 10.1021/jacs.8b13363
  • Nolan MC, Fuentes Caparrós AM, Dietrich B, et al. Optimising low molecular weight hydrogels for automated 3D printing. Soft Matter. 2017;13(45):8426–8432. doi: 10.1039/C7SM01694H
  • Gavel PK, Dev D, Parmar HS, et al. Investigations of peptide-based biocompatible injectable shape-memory hydrogels: differential biological effects on bacterial and human blood cells. ACS Appl Mater Interfaces. 2018;10(13):10729–10740. doi: 10.1021/acsami.8b00501
  • Sahoo P, Sankolli R, Lee H-Y, et al. Gel sculpture: moldable, load-bearing and self-healing non-polymeric supramolecular gel derived from a simple organic salt. Chem - A Eur J. 2012;18(26):8057–8063. doi: 10.1002/chem.201200986
  • Yan L, Gou S, Ye Z, et al. Self-healing and moldable material with the deformation recovery ability from self-assembled supramolecular metallogels. Chem Commun. 2014;50(85):12847–12850. doi: 10.1039/C4CC06154C
  • Liu J, Yin F, Hu J, et al. Cu2+-Triggered shrinkage of a natural betulin-derived supramolecular gel to fabricate moldable self-supporting gel. Mater Chem Front. 2021;5(12):4764–4771. doi: 10.1039/D1QM00322D
  • Kasak P, Hrobárik P, Osička J, et al. Nicotinamide-based supergelator self-assembling via asymmetric hydrogen bonding NH⋯OC and H⋯Br− pattern for reusable, moldable and self-healable nontoxic fuel gels. J Colloid Interface Sci. 2021;603:182–190. doi: 10.1016/j.jcis.2021.06.071
  • Loos JN, D’Acierno F, Mody UV, et al. Manipulating the self-assembly of multicomponent low molecular weight gelators (LMWGs) through molecular design. Chempluschem. 2022;87(4):e202200026. doi: 10.1002/cplu.202200026
  • Chen J, Boott CE, Lewis L, et al. Amino acid-containing phase-selective organogelators: a water-based delivery system for oil spill treatment. ACS Omega. 2020;5(30):18758–18765. doi: 10.1021/acsomega.0c01821
  • Weiss RG, Terech P, editors. Molecular gels: materials with self-assembled fibrillar networks. Dordrecht, The Netherlands: Springer; 2006.
  • Ren C, Shen J, Chen F, et al. Rapid room-temperature gelation of crude oils by a wetted powder gelator. Angew Chem Int Ed. 2017;56(14):3847–3851. doi: 10.1002/anie.201611852
  • Li J, Huo Y, Zeng H. Polar solvent-induced unprecedented supergelation of (un)weathered crude oils at room temperature. Langmuir. 2018;34(27):8058–8064. doi: 10.1021/acs.langmuir.8b01643
  • Loos JN, Boott CE, Hayward DW, et al. Exploring the tunable optical and mechanical properties of multicomponent low-molecular-weight gelators. Langmuir. 2021;37(1):105–114. doi: 10.1021/acs.langmuir.0c02464
  • Smith DK. Molecular gels – nanostructured soft materials. In: Atwood JL, Steed JW, editors. Organic nanostructures. Weinheim: Wiley-VCH Verlag GmbH & Co KGaA; 2008.
  • Ruíz-Olles J, Smith DK. Diffusion across a gel–gel interface – molecular-scale mobility of self-assembled ‘solid-like’ gel nanofibres in multi-component supramolecular organogels. Chem Sci. 2018;9(25):5541–5550. doi: 10.1039/C8SC01071D
  • Lovrak M, Hendriksen WEJ, Maity C, et al. Free-standing supramolecular hydrogel objects by reaction-diffusion. Nat Commun. 2017;8(1):15317. doi: 10.1038/ncomms15317
  • Nonappa N, Šaman D, Kolehmainen E. Studies on supramolecular gel formation using DOSY NMR. Magn Reson Chem. 2015;53(4):256–260. doi: 10.1002/mrc.4185
  • Dama M, Berger S. Study of an organogelator by diffusion-ordered NMR spectroscopy. J Phys Chem B. 2013;117(18):5788–5791. doi: 10.1021/jp401963t
  • Seidenkranz DT, Langworthy KA, Zakharov LN, et al. Single-component, low molecular weight organic supergelators based on chiral barbiturate scaffolds. Supramol Chem. 2019;31(8):499–507. doi: 10.1080/10610278.2019.1629437
  • Ramalhete SM, Nartowski KP, Sarathchandra N, et al. Supramolecular amino acid based hydrogels: probing the contribution of additive molecules using NMR spectroscopy. Chem - A Eur J. 2017;23(33):8014–8024. doi: 10.1002/chem.201700793
  • Cooper CL, Cosgrove T, van Duijneveldt JS, et al. The use of solvent relaxation NMR to study colloidal suspensions. Soft Matter. 2013;9(30):7211–7228. doi: 10.1039/c3sm51067k

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.