30
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Recent advances in sensing neutral molecules using low molecular weight gelators (LMWGs)

Received 16 Feb 2024, Accepted 13 May 2024, Published online: 21 May 2024

References

  • Babu SS, Praveen VK, Ajayaghosh A. Functional π-gelators and their applications. Chem Rev. 2014;114(4):1973–2129. doi: 10.1021/cr400195e
  • Liu M, Ouyang G, Niu D, et al. Supramolecular gelatons: towards the design of molecular gels. Org Chem Front. 2018;5(19):2885–2900. doi: 10.1039/C8QO00620B
  • Panja S, Adams DJ. Stimuli responsive dynamic transformations in supramolecular gels. Chem Soc Rev. 2021;50(8):5165–5200. doi: 10.1039/D0CS01166E
  • Piepenbrock MOM, Lloyd GO, Clarke N, Steed JW. Metal- and Anion-Binding Supramolecular Gels. Chem Rev. 2010;110(4):1960–2004. doi: 10.1021/cr9003067
  • Lu TT, Liu J, Li H, et al Stimulus-Responsive Supramolecular Gels. Prog Chem. 2016;28:1541.
  • Draper ER, Adams DJ. Photoresponsive gelators. Chem Commun. 2016;52(53):8196–8206. doi: 10.1039/C6CC03485C
  • Yang X, Zhang G, Zhang D. Stimuli responsive gels based on low molecular weight gelators. J Mater Chem. 2012;22(1):38–50. doi: 10.1039/C1JM13205A
  • Sun Z, Huang Q, He T, et al. Multistimuli-responsive supramolecular gels: design rationale, recent advances, and perspectives. Chemphyschem. 2014;15(12):2421–2430. doi: 10.1002/cphc.201402187
  • Li L, Sun R, Zheng R, Huang Y. Anions-responsive supramolecular gels: A review. Mater Des. 2021;205:109759. doi: 10.1016/j.matdes.2021.109759
  • Okesola BO, Smith DK. Applying low-molecular weight supramolecular gelators in an environmental setting – self-assembled gels as smart materials for pollutant removal. Chem Soc Rev. 2016;45(15):4226–4251. doi: 10.1039/C6CS00124F
  • Lim JY, Goh SS, Liow SS, et al. Molecular gel sorbent materials for environmental remediation and wastewater treatment. J Mater Chem A. 2019;7(32):18759–18791. doi: 10.1039/C9TA05782J
  • Jiao T. Supramolecular gels: materials and emerging applications. Weinheim, Germany: WILEY-VCH GmbH; 2021.
  • Gahlaut PS, Gautam D, Yadav K, et al. Supramolecular gels for the sensing and extraction of heavy metal ions from wastewater. J Reine und Angew Math. 2023;1272:134152. doi: 10.1016/j.molstruc.2022.134152
  • Vibhute AM, Muvvala V, Sureshan KM. A sugar-based gelator for marine oil-spill recovery. Angew Chem Int Ed. 2016;55(27):7782–7785. doi: 10.1002/anie.201510308
  • Khayat Z, Zali-Boeini H. Phase selective amphiphilic supergelators for oil spill solidification and dye removal. Soft Mater. 2019;17(2):150–158. doi: 10.1080/1539445X.2019.1580203
  • Mondal B, Bairagi D, Nandi N, et al. Peptide-based gel in environmental remediation: removal of toxic organic dyes and hazardous Pb 2+ and Cd 2+ Ions from wastewater and oil spill recovery. Langmuir. 2020;36(43):12942–12953. doi: 10.1021/acs.langmuir.0c02205
  • Bhardwaj V, Ballabh A. A series of multifunctional pivalamide based low molecular mass gelators (LMOGs) with potential applications in oil-spill remediation and toxic dye removal. Colloids Surf A:Physicochem Eng Asp. 2022;632:127813. doi: 10.1016/j.colsurfa.2021.127813
  • Khan M, Das S, Roy A, Roy S. Reusable sugar-based gelator for marine oil-spill recovery and waste water treatment. Langmuir. 2023;39(2):899–908. doi: 10.1021/acs.langmuir.2c03204
  • Saji VS. Recent updates on supramolecular-based drug delivery – macrocycles and supramolecular gels. Chem Rec. 2022;22(7):e202200053. doi: 10.1002/tcr.202200053
  • Hoque J, Sangaj N, Varghese S. Stimuli-responsive supramolecular hydrogels and their applications in regenerative medicine. Macromol biosci. 2019;19(1):1800259. doi: 10.1002/mabi.201800259
  • Shao T, Falcone N, Kraatz HB. Supramolecular peptide gels: influencing properties by metal ion coordination and their wide-ranging applications. ACS Omega. 2020;5(3):1312–1317. doi: 10.1021/acsomega.9b03939
  • Raymond DM, Abraham BL, Fujita T, et al. Low-molecular-weight supramolecular hydrogels for sustained and localized in vivo drug delivery. ACS Appl Bio Mater. 2019;2(5):2116–2124. doi: 10.1021/acsabm.9b00125
  • Oliveira CB, Gomes V, Ferreira PM, et al. Peptide-based supramolecular hydrogels as drug delivery agents: recent advances. Gels. 2022;8(11):706. doi: 10.3390/gels8110706
  • Lyu Y, Azevedo HS. Supramolecular hydrogels for protein delivery in tissue engineering. Molecules. 2021;26(4):873. doi: 10.3390/molecules26040873
  • Wang X, Feng C. Chiral fiber supramolecular hydrogels for tissue engineering. Rev Nanomed Nanobiotechnol. 2023;15(2):e1847. doi: 10.1002/wnan.1847
  • ) Fang W, Zhang Y, Wu J, et al. Recent advances in supramolecular gels and catalysis. Chem Asian J. 2018;13(7):712–729. doi: 10.1002/asia.201800017
  • Rizzo C, Marullo S, Billeci F, D’Anna F. Catalysis in supramolecular systems: the case of gel phases. J Org Chem. 2021;2021(22):3148–3169. doi: 10.1002/ejoc.202100372
  • Jung JH, Shinkai S, Shimizu T. Organic supramolecular architectures and their sol-gel transcription to Silica nanotubes. Chem Rec. 2003;3(4):212–224. doi: 10.1002/tcr.10065
  • Dawn A. Supramolecular gel as the template for catalysis, inorganic superstructure, and pharmaceutical crystallization. Int J Mol Sci. 2019;20(3):781. doi: 10.3390/ijms20030781
  • Khayat Z, Zali-Boeini H. Novel sugar-based azo dyes as multistimuli responsive supramolecular gelators and chemosensors. Dyes Pigments. 2018;159:337–344. doi: 10.1016/j.dyepig.2018.06.042
  • Mandegani F, Zali-Boeini H, Khayat Z, et al. Low-molecular-weight gelators as dual-responsive chemosensors for the naked-eye detection of mercury(II) and Copper(II) Ions and molecular logic gates. ChemistrySelect. 2020;5(2):886–893. doi: 10.1002/slct.201903436
  • ) Lin Q, Fan YQ, Mao PP, et al. Pillar[5]arene-based supramolecular organic framework with multi-guest detection and recyclable separation properties. Chemistry A European J. 2018;24(4):777–783. doi: 10.1002/chem.201705107
  • Ma Y, Cametti M, Džolić Z, Jiang S. Selective Cu(ii) sensing by a versatile AIE cyanostilbene-based gel system. Soft Matter. 2019;15(30):6145–6150. doi: 10.1039/C9SM00955H
  • Chen X, Zhou Y, Zhang G, et al. Bifunctional organogels based on pyridine-hydrazide for enrichment and detection of Cu2+, Fe3+and F−. Coll Inter Sci Commun. 2021;44:100489. doi: 10.1016/j.colcom.2021.100489
  • Chen X, Zhou Y, Yang M, et al. A novel multi-stimuli-responsive organogel sensor for detecting Cu2+ and Co2+ based on benzotriazole derivative. J Mol Struct. 2022;1250:131810. doi: 10.1016/j.molstruc.2021.131810
  • Panja A, Ghosh K. Pyridylazo derivatives with dicyanovinyl appendage in selective sensing of CN−in Sol-Gel Medium. ChemistrySelect. 2018;3(6):1809–1814. doi: 10.1002/slct.201702839
  • Raza R, Panja A, Mukherjee M, et al. Dosimetric chromogenic probe for selective detection of sulfide via sol–gel methodology. ACS Omega. 2018;3(12):17319–17325. doi: 10.1021/acsomega.8b02795
  • Panja S; Panja A, Ghosh K. Supramolecular gels in cyanide sensing: a review. Mater Chem Front. 2021;5(2):584–602. doi: 10.1039/D0QM00551G
  • Panja S. Dosimetric gelator probes and their application as sensors. J Indian Chem Soc. 2022;99(3):100359. doi: 10.1016/j.jics.2022.100359
  • Ghosh S, Jana P, Ghosh K. A naphthalimide-linked new pyridylazo phenol derivative for selective sensing of cyanide ions (−) in sol–gel medium. Anal Methods. 2021;13(5):695–702. doi: 10.1039/D0AY02033H
  • Picci G, Mulvee MT, Caltagirone C, et al. Anion-Responsive Fluorescent Supramolecular Gels. Molecules. 2022;27(4):1257. doi: 10.3390/molecules27041257
  • Singh WP, Singh RS. Gelation-based visual detection of analytes. Soft Mater. 2019;17(1):93–118. doi: 10.1080/1539445X.2018.1539402
  • Hirst AR, Smith DK, Feiters MC, et al. Two-component dendritic gels: easily tunable materials. J Am Chem Soc. 2003;125(30):9010–9011. doi: 10.1021/ja036111q
  • Hirst AR, Smith DK, Feiters MC and Geurts HP. Two-component dendritic gel: effect of stereochemistry on the supramolecular chiral assembly. Chem: Eur J. 2004;10(23):5901–5910. doi: 10.1002/chem.200400502
  • Hirst AR, Smith DK. Two-component gel-phase materials—highly tunable self-assembling systems. Chem: Eur J. 2005;11(19):5496–5508. doi: 10.1002/chem.200500241
  • Suzuki M, Saito H, Shirai H, et al. Supramolecular organogel formation triggered by acid–base interaction in two-component system consisting of l-lysine derivative and aliphatic acids. New J Chem. 2007;31(9):1654–1660. doi: 10.1039/b705888h
  • Suzuki M, Saito H and Hanabusa K. Two-component organogelators based on two l-amino acids: effect of combination of l-lysine with various l-amino acids on organogelation behavior. Langmuir. 2009;25(15):8579–8585. doi: 10.1021/la8040924
  • Cao X; Gao A; Hou JT, Yi T. Fluorescent Supramolecular Self-Assembly Gels and Their Application as Sensors: A Review. Coord Chem Rev. 2021;434:213792. doi: 10.1016/j.ccr.2021.213792
  • Gambhir D, Kumar S, Koner RR. Chiral gelators for visual enantiomeric recognition. Soft Matter. 2022;18(19):3624–3637. doi: 10.1039/D2SM00002D
  • Cao X, Wu Y, Liu K, et al. Iridium complex triggered white-light-emitting gel and its response to cysteine. J Mater Chem. 2012;22(6):2650–2657. doi: 10.1039/C2JM13826C
  • He T, Li K, Wu MY et al. Visual detection of amino acids by supramolecular gel collapse. RSC Adv. 2014;4(5):2119–2123. doi: 10.1039/C3RA44853C
  • He Y, Xu M, Gao R et al. Two-Component Supramolecular Gels Derived from Amphiphilic Shape-Persistent Cyclo[6]aramides for Specific Recognition of Native Arginine. Angewandte Chemie. 2014;53(44):11834–11839. doi: 10.1002/anie.201407092
  • Miao W, Zhang L, Wang X et al. A dual-functional metallogel of amphiphilic copper(II) quinolinol: redox responsiveness and enantioselectivity. J. 2013;19(9):3029–3036. doi: 10.1002/chem.201203401
  • Lin Q, Mao PP, Fan YQ et al. Novel multi-analyte responsive ionic supramolecular gels based on pyridinium functionalized-naphthalimide. Soft Matter. 2017;13(40):7360–7364. doi: 10.1039/C7SM01624G
  • Pu L. Enantioselective fluorescent sensors: a tale of BINOL. Acc Chem Res. 2012;45(2):150–163. doi: 10.1021/ar200048d
  • Jia L, Yin J, Guo X et al. A chiral BINOL-based Gemini amphiphilic gelator and its specific discrimination of native arginine by gelation in water. Soft Matter. 2017;13(32):5453–5462. doi: 10.1039/C7SM01156C
  • Yao H, Wang J, Song SS et al. A novel supramolecular AIE gel acts as a multi-analyte sensor array. New J Chem. 2018;42(22):18059–18065. doi: 10.1039/C8NJ04160A
  • Malviya N, Sonkar C, Ganguly R et al. Cobalt metallogel interface for selectively sensing l-tryptophan among essential amino acids. Inorg Chem. 2019;58(11):7324–7334. doi: 10.1021/acs.inorgchem.9b00455
  • ) Yang J, Wang H, Zhao Q et al. Chiral supramolecular hydrogel with controllable phase transition behavior for stereospecific molecular recognition. J Electroanal Chem. 2021;883:115045. doi: 10.1016/j.jelechem.2021.115045
  • Zali‐Boeini H, Khayat Z. A Novel chemosensor for selective detection of L-Arginine and L–Cysteine via macroscopic sol-gel transition. ChemistrySelect. 2022;7(7):e202103315. doi: 10.1002/slct.202103315
  • Yao H, Niu YB, Hu YP, et al. Metal-ion-mediated synergistic coordination: construction of AIE-metallogel sensor arrays for anions and amino acids. New J Chem. 2022;46(36):17251–17259. doi: 10.1039/D2NJ02992H
  • Jiang Y, Huang Z, Tian J et al. A chiral BINOL-based supramolecular gel enabling sensitive enantioselective and chemoselective collapse toward histidine. Soft Matter. 2023;19(3):430–435. doi: 10.1039/D2SM01424F
  • Zhou C, Gao W, Yang K et al. A novel glucose/ph responsive low-molecular-weight organogel of easy recycling. Langmuir. 2013;29(44):13568–13575. doi: 10.1021/la4033578
  • Mehwish N, Dou X, Zhao C et al. Chirality transfer in supramolecular co-assembled fibrous material enabling the visual recognition of sucrose. Adv Fiber Mater. 2020;2(4):204–211. doi: 10.1007/s42765-020-00028-w
  • Yang D, Liu C, Zhang L, Liu M. Visualized discrimination of ATP from ADP and AMP through collapse of supramolecular gels. Chem Commun. 2014;50(84):12688–12690. doi: 10.1039/C4CC05406G
  • Fang W, Liu C, Yu F et al. Macroscopic and fluorescent discrimination of adenosine triphosphate via selective metallo-hydrogel formation: a visual, practical, and reliable rehearsal toward cellular imaging. Mater Interfaces. 2016;8(32):20583–20590. doi: 10.1021/acsami.6b05804
  • Zhai L, Liu M, Xue P, et al. Nanofibers generated from nonclassical organogelators based on difluoroboron β-diketonate complexes to detect aliphatic primary amine vapors. J Mater Chem C. 2016;4(34):7939–7947. doi: 10.1039/C6TC01790H
  • Miao W, Zhang L, Wang X et al. Gelation-induced visible supramolecular chiral recognition by fluorescent metal complexes of quinolinol–glutamide. Langmuir. 2013;29(18):5435–5442. doi: 10.1021/la400562f
  • Xue P, Xu Q, Gong P, et al. Fibrous film of a two-component organogel as a sensor to detect and discriminate organic amines. Chem Comm. 2013;49(52):5838–5840. doi: 10.1039/c3cc42892c
  • Xue P, Yao B, Wang P, et al. Strong fluorescent smart organogel as a dual sensing material for volatile acid and organic amine vapors. Chem.– Europ. J. 2015;21(48):17508–17515. doi: 10.1002/chem.201502401
  • Cao X, Zhang T, Gao A, et al. Aliphatic amine responsive organogel system based on a simple naphthalimide derivative. Org Biomol Chem. 2014;12(33):6399–6405. doi: 10.1039/C4OB00728J
  • Cao X, Ding Q, Zhao N, et al. Supramolecular self-assembly system based on naphthalimide boric acid ester derivative for detection of organic amine. Sensors And Actuat B Chem. 2018;256:711–720. doi: 10.1016/j.snb.2017.09.210
  • Cao X, Zhao N, Gao A, et al. Bis-naphthalimides self-assembly organogel formation and application in detection of p-phenylenediamine. Mater Sci Eng C. 2017;70:216–222. doi: 10.1016/j.msec.2016.08.079
  • Cao X, Li Y, Gao A, et al. Multifunctional fluorescent naphthalimide self-assembly system for the detection of Cu 2+ and K + and continuous sensing of organic amines and gaseous acids. J Mater Chem C. 2019;7(34):10589–10597. doi: 10.1039/C9TC03243F
  • Cao X, Li Y, Gao A, et al. Sensing organic amines and quantitative monitoring of intracellular ph change using a fluorescent self-assembly system. ACS Appl Polym Mater. 2019;1(6):1485–1495. doi: 10.1021/acsapm.9b00238
  • Cao X, Li Y, Yu Y, et al. Multifunctional supramolecular self-assembly system for colorimetric detection of Hg2+, Fe3+, Cu 2+and continuous sensing of volatile acids and organic amine gases. Nanoscale. 2019;11(22):10911–10920. doi: 10.1039/C9NR01433K
  • Cao X, Ding Q, Li Y, et al. Continuous multi-channel sensing of volatile acid and organic amine gases using a fluorescent self-assembly system. J Mater Chem C. 2019;7(1):133–142. doi: 10.1039/C8TC04964E
  • Xu X, Qu L, Song J, et al. A simple and visual approach for enantioselective recognition through supramolecular gels with specific selectivity. Chem Comm. 2019;55(66):9873–9876. doi: 10.1039/C9CC04895B
  • Jiang Q, Ruan H, Wang T, et al. Extending conjugation of linear cyanostilbene derivatives via a pyridine moiety for multi-stimuli-responsive fluorescence organogels. Langmuir. 2023;39(31):10904–10912. doi: 10.1021/acs.langmuir.3c01089
  • Kodama K, Obata M, Sugimura S, et al. Development of low-molecular-weight organogelators from cyclic β-amino acid: effect of stereochemistry and their application on visual chiral recognition of amines. Chem Eur J. 2023;29(11):e202202692. doi: 10.1002/chem.202202692
  • Zammataro A, Santonocito R, Pappalardo A, et al. Catalytic degradation of nerve agents. Catalysts. 2020;10(8):881. doi: 10.3390/catal10080881
  • Tuccitto N, Spitaleri L, Li Destri G, et al. Supramolecular sensing of a chemical warfare agents simulant by functionalized carbon nanoparticles. Molecules. 2020;25(23):5731. doi: 10.3390/molecules25235731
  • Butera E, Zammataro A, Pappalardo A, et al. Supramolecular Sensing of Chemical Warfare Agents. ChemPluschem. 2021;86(4):681–695. doi: 10.1002/cplu.202100071
  • Hiscock JR, Piana F, Sambrook MR, et al. Detection of nerve agent via perturbation of supramolecular gel formation. Chem Comm. 2013;49(80):9119–9121. doi: 10.1039/c3cc44841j
  • de Loos M, Ligtenbarg AG, van Esch J, et al. Tripodal tris-urea derivatives as gelators for organic solvents. Eur J Org Chem. 2000;2000(22):3675–3678. doi: 10.1002/1099-0690(200011)2000:22<3675:AID-EJOC3675>3.3.CO;2-B
  • Suzuki M, Nakajima Y, Yumoto M, et al. In situ organogelation at room temperature: direct synthesis of gelators in organic solvents. Org Biomol Chem. 2004;2(8):1155–1159. doi: 10.1039/b401683a
  • Hiscock JR, Sambrook MR, Ede JA, et al. Disruption of a binary organogel by the chemical warfare agent soman (GD) and common organophosphorus simulants. J Mater Chem A. 2015;3(3):1230–1234. doi: 10.1039/C4TA04834B
  • Ayabe M, Kishida T, Fujita N, et al. Binary organogelators which show light and temperature responsiveness. Org Biomol Chem. 2003;1(15):2744–2747. doi: 10.1039/b304224c
  • Abdelrahman MS, Khattab TA, Kamel S. Hydrazone-based supramolecular organogel for selective chromogenic detection of organophosphorus nerve agent mimic. ChemistrySelect. 2021;6(9):2002–2009. doi: 10.1002/slct.202004850
  • Peiris-John RJ, Wickremasinghe R. Impact of low-level exposure to organophosphates on human reproduction and survival. Trans R Soc Trop Med. 2008;102(3):239–245. doi: 10.1016/j.trstmh.2007.11.012
  • Okoroiwu HU, Iwara IA. Dichlorvos toxicity: a public health perspective. Interdiscip Toxicol. 2018;11(2):129–137. doi: 10.2478/intox-2018-0009
  • Sahub C, Andrews JL, Smith JP, et al. Enhancement of sensitivity for dichlorvos detection by a low-weight gelator based on bolaamphiphile amino acid derivatives decorated with a hybrid graphene quantum dot/enzyme/hydrogel. Mater Chem Front. 2021;5(18):6850–6859. doi: 10.1039/D1QM00296A
  • Rovina K, Siddiquee S. A review of recent advances in melamine detection techniques. J Food Compost Anal. 2015;43:25–38. doi: 10.1016/j.jfca.2015.04.008
  • Shellaiah M, Sun KW. Review on nanomaterial-based melamine detection. Chemosensors. 2019;7(1):9. doi: 10.3390/chemosensors7010009
  • Suchý P, Straková E, Herzig I, et al. Toxicological risk of melamine and cyanuric acid in food and feed. Interdiscip Toxicol. 2009;2(2):55–59. doi: 10.2478/v10102-009-0010-6
  • Chu CY, Wang CC. Toxicity of melamine: the public health concern. J. Environ. Sci. Health C. 2013;31(4):342–386. doi: 10.1080/10590501.2013.844758
  • Hanabusa K, Miki T, Taguchi Y, et al. Two-component, small molecule gelling agents. J Chem Soc, Chem Commun. 1993;18(18):1382–1384. doi: 10.1039/c39930001382
  • Zhang J, Ou C, Shi Y, et al. Visualized detection of melamine in milk by supramolecular hydrogelations. Chem Commun. 2014;50(85):12873–12876. doi: 10.1039/C4CC05826G
  • Mehwish N, Kousar A, Dang-I AY, et al. Molecular Recognition of Melamine and Cyanuric Acid by C2-Symmetric Phenylalanine Based Supramolecular Hydrogels. Europ Polym J. 2019;118:170–175. doi: 10.1016/j.eurpolymj.2019.05.059
  • Panja A, Ghosh K. Pyridyl azo-based naphthyl acetate for sensing of hydrazine and perborate in sol-gel medium. ChemistrySelect. 2018;3(32):9448–9453. doi: 10.1002/slct.201801791
  • Kartha KK, Babu SS, Srinivasan S, et al. Attogram sensing of trinitrotoluene with a self-assembled molecular gelator. J Am Chem Soc. 2012;134(10):4834–4841. doi: 10.1021/ja210728c
  • Hanabusa K, Takata S, Fujisaki M, et al. Fluorescent gelators for detection of explosives. Bull Chem Soc Jpn. 2016;89(11):1391–1401. doi: 10.1246/bcsj.20160232
  • Cao X, Zhao N, Lv H, et al, Jing Q, Yi T. Strong blue emissive supramolecular self-assembly system based on naphthalimide derivatives and its ability of detection and removal of 2,4,6-Trinitrophenol. Langmuir. 2017;33(31):7788–7798. doi: 10.1021/acs.langmuir.7b01927
  • Qin ZS, Dong WW, Zhao J, et al. A water-stable Tb(iii)-based metal–organic gel (MOG) for detection of antibiotics and explosives. Inorg Chem Front. 2018;5(1):120–126. doi: 10.1039/C7QI00495H
  • Qin ZS, Dong WW, Zhao J, et al. Metathesis in Metal–Organic Gels (MOGs): a facile strategy to construct robust fluorescent Ln-MOG sensors for antibiotics and explosives. Eur J Inorg Chem. 2018;2018(2):186–193. doi: 10.1002/ejic.201701339
  • Madhu C, Roy B, Makam P, et al. Bicomponent β-sheet assembly of dipeptide fluorophores of opposite polarity and sensitive detection of nitro-explosives. Chem Comm. 2018;54(18):2280–2283. doi: 10.1039/C8CC00158H
  • Mondal S, Bairi P, Das S, Nandi AK. Triarylamine-cored dendritic molecular gel for efficient colorometric, fluorometric, and impedometeric detection of picric acid. Chem Eur J. 2018;24(21):5591–5600. doi: 10.1002/chem.201705782
  • Yu X, Guo J, Peng P, et al. Self-assembly induced hydrogelation approach as novel means of selective and visual sensing toward picric acid. Appl Surface Sci. 2019;487:473–479. doi: 10.1016/j.apsusc.2019.05.126
  • Pramanik B, Singha N, Das D. Sol-, Gel-, and paper-based detection of picric acid at femtogram level by a short peptide gelator. ACS Appl Polym Mater. 2019;1(4):833–843. doi: 10.1021/acsapm.9b00071
  • Goyal H, Pachisia S, Gupta R. Systematic design of a low-molecular-weight gelator and its application in the sensing and retention of residual antibiotics. Cryst Growth Des. 2020;20(9):6117–6128. doi: 10.1021/acs.cgd.0c00820
  • Goyal H, Gupta R. Sensing and formation of a stable gel in the presence of picric acid by a low-molecular-weight-gelator. RJ Indian Chem Soc. 2022;99(7):100521. doi: 10.1016/j.jics.2022.100521
  • Dahiwadkar R, Murugan A, Johnson D, et al. Functional organogel with α-cyanostilbene scaffold: aggregation enhanced emission and picric acid sensing. J Photochem Photobiol A Chem. 2023;434:114227. doi: 10.1016/j.jphotochem.2022.114227
  • Saha E, Chhetri A, Venugopal PP, et al. A chemically robust amine-grafted Zn(ii)-based smart supramolecular gel as a regenerative platform for trace discrimination of nitro-antibiotics and assorted environmental toxins. J Mater Chem C. 2023;11(9):3252–3261. doi: 10.1039/D2TC04700D
  • Zhang X, Lee S, Liu Y, et al. Anion-activated, thermoreversible gelation system for the capture, release and visual monitoring of CO2. Sci Rep. 2014;4(1):4593. doi: 10.1038/srep04593
  • Zhang X, Li H, Mu H, et al. Cholesteryl naphthalimide-based gelators: Their applications in the multiply visual sensing of CO2 based on an anion-induced strategy. Dyes Pigments. 2017;147:40–49. doi: 10.1016/j.dyepig.2017.07.067
  • Zhang X, Song Y, Liu M, et al. Visual sensing of CO2 in air with a 3-position modified naphthalimide-derived organogelator based on a fluoride ion-induced strategy. Dyes Pigments. 2019;160:799–805. doi: 10.1016/j.dyepig.2018.09.010
  • Zhang X, Mu H, Li H, et al. Dual-channel sensing of CO2: reversible solution-gel transition and gelation-induced fluorescence enhancement. Sensors And Actuat B Chem. 2018;255:2764–2778. doi: 10.1016/j.snb.2017.09.091
  • Zhang X, Li H, Zhang X, et al. Visual chiral recognition of 1,1′-binaphthol through enantioselective collapse of gel based on an amphiphilic Schiff-base gelator. Front Chem Sci Eng. 2017;11(2):231–237. doi: 10.1007/s11705-017-1633-3
  • Yao H, Wang J, Fan YQ, et al. Supramolecular hydrogel-based AIEgen: Construction and dual-channel recognition of negative charged dyes. Dyes Pigments. 2019;167:16–21. doi: 10.1016/j.dyepig.2019.04.011
  • Gao A, Han Q, Wang Q, et al. Triphenylamine derivative-based supramolecular self-assembly system for selective sensing methanol via hydrogen bonding. Dyes Pigments. 2021;195:109689. doi: 10.1016/j.dyepig.2021.109689

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.