949
Views
188
CrossRef citations to date
0
Altmetric
Research Article

Block copolymer micelles as delivery vehicles of hydrophobic drugs: Micelle–cell interactions

, &
Pages 343-355 | Received 01 Oct 2005, Accepted 01 Feb 2006, Published online: 08 Oct 2008

References

  • Adams ML, Lavasanifar A, Kwon GS. Amphiphilic block copolymers for drug delivery. J Pharm Sci 2003, 92: 1343–1355
  • Alakhov VY, Kabanov AV. Block copolymeric biotransport carriers as versatile vehicles for drug delivery. Expert Opin Investig Drugs 1998, 7: 1453–1473
  • Aliabadi HM, Mahmud A, Sharifabadi AD, Lavasanifar A. Micelles of methoxy poly(ethylene oxide)–b–poly(epsiloncaprolactone) as vehicles for the solubilization and controlled delivery of cyclosporine A. J Control Release 2005, 104: 301–311
  • Allen C. 1999. Polycaprolactone–b–poly(ethylene oxide) copolymer micelles: Physico-chemical characterization and application in drug delivery, McGill University. Doctoral dissertation.
  • Allen TM, Cullis PR. Drug delivery systems: Entering the mainstream. Science 2004, 303: 1818–1822
  • Allen C, Maysinger D, Eisenberg A. Nano-engineering block copolymer aggregates for drug delivery. Colloids Surf B Biointerfaces 1999a, 16: 3–27
  • Allen C, Yu Y, Eisenberg A, Maysinger D. Cellular internalization of PCL(20)–b–PEO(44) block copolymer micelles. Biochim Biophys Acta 1999b, 1421: 32–38
  • Allen C, Eisenberg A, Mrsic J, Maysinger D. PCL–b–PEO micelles as a delivery vehicle for FK506: Assessment of a functional recovery of crushed peripheral nerve. Drug Deliv 2000a, 7: 139–145
  • Allen C, Han J, Yu Y, Maysinger D, Eisenberg A. Polycaprolactone–b–poly(ethylene oxide) copolymer micelles as a delivery vehicle for dihydrotestosterone. J Control Release 2000b, 63: 275–286
  • Amerongen GPV, van Hinsbergh VWM. Targets for pharmacological intervention of endothelial hyperpermeability and barrier function. Vascul Pharmacol 2002, 39: 257–272
  • Araujo L, Lobenberg R, Kreuter J. Influence of the surfactant concentration on the body distribution of nanoparticles. J Drug Target 1999, 6: 373–385
  • Arima H, Yunomae K, Miyake K, Irie T, Hirayama F, Uekama K. Comparative studies of the enhancing effects of cyclodextrins on the solubility and oral bioavailability of tacrolimus in rats. J Pharm Sci 2001, 90: 690–701
  • Batrakova EV, Li S, Vinogradov SV, Alakhov VY, Miller DW, Kabanov AV. Mechanism of Pluronic® effect on P-glycoprotein efflux system in blood–brain barrier: Contributions of energy depletion and membrane fluidization. J Pharmacol Exp Ther 2001, 299: 483–493
  • Batrakova EV, Li S, Li Y, Alakhov VY, Elmquist WF, Kabanov AV. Distribution kinetics of a micelle-forming block copolymer Pluronic® P85. J Control Release 2004, 100: 389–397
  • Bogunia-Kubik K, Sugisaka M. From molecular biology to nanotechnology and nanomedicine. Biosystems 2002, 65: 123–138
  • Bonomi P. Eastern cooperative oncology group experience with chemotherapy in advanced non-small cell lung cancer. Chest 1998, 113: 13S–16S
  • Cavallaro G, Maniscalco L, Licciardi M, Giammona G. Tamoxifen-loaded polymeric micelles: Preparation, physicochemical characterization and in vitro evaluation studies. Macromol Biosci 2004, 4: 1028–1038
  • Chang SF, Chang HY, Tong YC, Chen SH, Hsaio FC, Lu SC, Liaw J. Nonionic polymeric micelles for oral gene delivery in vivo. Hum Gene Ther 2004, 15: 481–493
  • Dalhaimer P, Engler AJ, Parthasarathy R, Discher DE. Targeted worm micelles. Biomacromolecules 2004, 5: 1714–1719
  • Danson S, Ferry D, Alakhov V, Margison J, Kerr D, Jowle D, Brampton M, Halbert G, Ranson M. Phase I dose escalation and pharmacokinetic study of Pluronic® polymerbound doxorubicin (SP 1049C) in patients with advanced cancer. Br J Cancer 2004, 90: 2085–2091
  • De S, Miller DW, Robinson DH. Effect of particle size of nanospheres and microspheres on the cellular-association and cytotoxicity of paclitaxel in 4T1 cells. Pharm Res 2005, 22: 766–775
  • Demina T, Grozdova I, Krylova O, Zhirnov A, Istratov V, Frey H, Kautz H, Melik-Nubarov N. Relationship between the structure of amphiphilic copolymers and their ability to disturb lipid bilayers. Biochemistry 2005, 44: 4042–4054
  • Dimitrov P, Rangelov S, Dworak A, Tsvetanov CB. Synthesis and associating properties of poly(ethoxyethyl glycidyl ether)/poly(propylene oxide) triblock copolymers. Macromolecules 2004, 37: 1000–1008
  • Drexler KE. Molecular engineering—an approach to the development of general capabilities for molecular manipulation. Proc Natl Acad Sci USA Phys Sci 1981, 78: 5275–5278
  • Drexler KE. Nanotechnology: From feynman to funding. Bull Sci Technol Soc 2004, 24: 21–27
  • Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 2002, 298: 1759–1762
  • Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov 2003, 2: 347–360
  • Duncan R, Pratten MK, Cable HC, Ringsdorf H, Lloyd JB. Effect of molecular-size of I-125-labeled poly(vinylpyrrolidone) on its pinocytosis by rat visceral yolk sacs and rat peritoneal macrophages. Biochem J 1981, 196: 49–55
  • Emptage NJ. Fluorescent imaging in living systems. Curr Opin Pharmacol 2001, 1: 521–525
  • Feynman RP. 1960. There's plenty of room at the bottom: An invitation to enter a new field of physics. Engineering and Science, California Institute of Technology, (Transcript of a talk given at CALTECH Dec 29, 1959)
  • Freitas RA. Exploratory design in medical nanotechnology: A mechanical artificial red cell. Artif Cells Blood Substit Immobil Biotechnol 1998, 26: 411–430
  • Freitas RA. Nanomedicine, volume I: Basic capabilities. Landes Bioscience, Georgetown, TX 1999
  • Funhoff AM, Monge S, Teeuwen R, Koning GA, Schuurmans-Nieuwenbroek NM, Crommelin DJ, Haddleton DM, Hennink WE, van Nostrum CF. PEG shielded polymeric double layered micelles for gene delivery. J Control Release 2005, 102: 711–724
  • Gabizon A, Catane R, Uziely B, Kaufman B, Safra T, Cohen R, Martin F, Huang A, Barenholz Y. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res 1994, 54: 987–992
  • Gaucher G, Dufresne MH, Sant VP, Kang N, Maysinger D, Leroux JC. Block copolymer micelles: Preparation, characterization and application in drug delivery. J Control Release 2005, 109: 169–188
  • Gil ES, Hudson SA. Stimuli-responsive polymers and their bioconjugates. Prog Polym Sci 2004, 29: 1173–1222
  • Gillies ER, Frechet JMJ. Development of acid-sensitive copolymer micelles for drug delivery. Pure Appl Chem 2004, 76: 1295–1307
  • Gillies ER, Frechet JM. pH-Responsive copolymer assemblies for controlled release of doxorubicin. Bioconjug Chem 2005, 16: 361–368
  • Gillies ER, Jonsson TB, Frechet JMJ. Stimuli-responsive supramolecular assemblies of linear-dendritic copolymers. J Am Chem Soc 2004, 126: 11936–11943
  • Gros L, Ringsdorf H, Schupp H. Polymeric anti-tumor agents on a molecular and on a cellular-level. Angew Chem Int Ed Engl 1981, 20: 305–325
  • Harada A, Togawa H, Kataoka K. Physicochemical properties and nuclease resistance of antisense-oligodeoxynucleotides entrapped in the core of polyion complex micelles composed of poly(ethylene glycol)–poly(l-lysine) block copolymers. Eur J Pharm Sci 2001, 13: 35–42
  • Hirano T, Klesse W, Ringsdorf H. Polymeric derivatives of activated cyclophosphamide as drug delivery systems in antitumor chemotherapy—pharmacologically active polymers 0.20. Makromol Chem Macromol Chem Phys 1979, 180: 1125–1131
  • Jewell RC, Khor SP, Kisor DF, LaCroix KA, Wargin WA. Pharmacokinetics of RheothRx injection in healthy male volunteers. J Pharm Sci 1997, 86: 808–812
  • Kabanov AV, Alakhov VY. Pluronic® block copolymers in drug delivery: From micellar nanocontainers to biological response modifiers. Crit Rev Ther Drug Carrier Syst 2002, 19: 1–72
  • Kabanov AV, Okano T. Challenges in polymer therapeutics: State of the art and prospects of polymer drugs. Adv Exp Med Biol 2003, 519: 1–27
  • Kabanov AV, Slepnev VI, Kuznetsova LE, Batrakova EV, Alakhov VY, Meliknubarov NS, Sveshnikov PG, Kabanov VA. Pluronic® micelles as a tool for low-molecular compound vector delivery into a cell—effect of staphylococcus-aureus enterotoxin-B on cell loading with micelle incorporated fluorescent dye. Biochem Int 1992, 26: 1035–1042
  • Kabanov AV, Batrakova EV, Alakhov VY. Pluronic® block copolymers for overcoming drug resistance in cancer. Adv Drug Deliv Rev 2002a, 54: 759–779
  • Kabanov AV, Batrakova EV, Alakhov VY. Pluronic® block copolymers for overcoming drug resistance in cancer. Adv Drug Deliv Rev 2002b, 54: 759–779
  • Kabanov AV, Batrakova EV, Sriadibhatla S, Yang Z, Kelly DL, Alakov VY. Polymer genomics: Shifting the gene and drug delivery paradigms. J Control Release 2005, 101: 259–271
  • Kakizawa Y, Kataoka K. Block copolymer micelles for delivery of gene and related compounds. Adv Drug Deliv Rev 2002, 54: 203–222
  • Kang YJ, Taton TA. Core/shell gold nanoparticles by self-assembly and cross-linking of micellar, block-copolymer shells. Angew Chem Int Ed 2005, 44: 409–412
  • Kang N, Perron ME, Prud'homme RE, Zhang YB, Gaucher G, Leroux JC. Stereocomplex block copolymer micelles: Core-shell nanostructures with enhanced stability. Nanoletters 2005, 5: 315–319
  • Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: Design, characterization and biological significance. Adv Drug Deliv Rev 2001, 47: 113–131
  • Katayama Y, Sonoda T, Maeda M. A polymer micelle responding to the protein kinase A signal. Macromolecules 2001, 34: 8569–8573
  • Kim TY, Kim DW, Chung JY, Shin SG, Kim SC, Heo DS, Kim NK, Bang YJ. Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin Cancer Res 2004, 10: 3708–3716
  • Krylova OO, Pohl P. Ionophoric activity of Pluronic® block copolymers. Biochemistry 2004, 43: 3696–3703
  • Kumar N, Ravikumar MNV, Domb AJ. Biodegradable block copolymers. Adv Drug Deliv Rev 2001, 53: 23–44
  • Kwon GS. Polymeric micelles for delivery of poorly water soluble compounds. Crit Rev Ther Drug Carrier Syst 2003, 20: 357–403
  • Kwon G, Naito M, Yokoyama M, Okano T, Sakurai Y, Kataoka K. Micelles based on Ab block copolymers of poly(ethylene oxide) and poly(beta-benzyl l-aspartate). Langmuir 1993, 9: 945–949
  • Kwon GS, Naito M, Kataoka K, Yokoyama M, Sakurai Y, Okano T. Block copolymer micelles as vehicles for hydrophobic drugs. Colloids Surf B Biointerfaces 1994a, 2: 429–434
  • Kwon GS, Yokoyama M, Okano T, Sakurai Y, Kataoka K. Enhanced tumor accumulation and prolonged circulation times of micelle-forming poly(ethylene oxide-aspartate) block copolymer–adriamycin conjugates. J Control Release 1994b, 28: 334–335
  • La SB, Okano T, Kataoka K. Preparation and characterization of the micelle-forming polymeric drug indomethacin incorporated poly(ethylene oxide)–poly(beta-benzyl l-aspartate) block copolymer micelles. J Pharm Sci 1996, 85: 85–90
  • Lavan DA, Lynn DM, Langer R. Moving smaller in drug discovery and delivery. Nat Rev Drug Discov 2002, 1: 77–84
  • Lehn JM. Supramolecular chemistry. Science 1993, 260: 1762–1763
  • Lele BS, Leroux JC. Synthesis and micellar characterization of novel Amphiphilic A–B–A triblock copolymers of N-(2-hydroxypropyl)methacrylamide or N-vinyl-2-pyrrolidone with poly(is an element of-caprolactone). Macromolecules 2002, 35: 6714–6723
  • Letchford K, Zastre J, Liggins R, Burt H. Synthesis and micellar characterization of short block length methoxypoly(ethylene glycol)–block–poly(caprolactone) diblock copolymers. Colloids Surf B Biointerfaces 2004, 35: 81–91
  • Li YW, Duc HLH, Tyler B, Williams T, Tupper M, Langer R, Brem H, Cima MJ. In vivo delivery of BCNU from a MEMS device to a tumor model. J Control Release 2005, 106: 138–145
  • Liaw J, Aoyagi T, Kataoka K, Sakurai Y, Okano T. Permeation of PEO-PBLA-FITC polymeric micelles in aortic endothelial cells. Pharm Res 1999, 16: 213–220
  • Liu SQ, Tong YW, Yang YY. Incorporation and in vitro release of doxorubicin in thermally sensitive micelles made from poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)–b–poly(d,l-lactide-co-glycolide) with varying compositions. Biomaterials 2005, 26: 5064–5074
  • Luo LB, Tam J, Maysinger D, Eisenberg A. Cellular internalization of poly(ethylene oxide)–b–poly(epsilon-caprolactone) diblock copolymer micelles. Bioconjug Chem 2002, 13: 1259–1265
  • Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J Control Release 2000, 65: 271–284
  • Mahmud A, Lavasanifar A. The effect of block copolymer structure on the internalization of polymeric micelles by human breast cancer cells. Colloids Surf B Biointerfaces 2005, 45: 82–89
  • Matsumura Y, Hamaguchi T, Ura T, Muro K, Yamada Y, Shimada Y, Shirao K, Okusaka T, Ueno H, Ikeda M, Watanabe N. Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Br J Cancer 2004, 91: 1775–1781
  • Melik-Nubarov NS, Pomaz OO, Dorodnych TY, Badun GA, Ksenofontov AL, Schemchukova OB, Arzhakov SA. Interaction of tumor and normal blood cells with ethylene oxide and propylene oxide block copolymers. FEBS Lett 1999, 446: 194–198
  • Mellman I. Endocytosis and molecular sorting. Annu Rev Cell Dev Biol 1996, 12: 575–625
  • Menger FM. Structure of micelles. Acc Chem Res 1979, 12: 111–114
  • Menger FM, Jerkunica JM, Johnston JC. Water-content of a micelle interior—Fjord vs. Reef models. J Am Chem Soc 1978, 100: 4676–4678
  • Minko T, Batrakova EV, Li S, Li YL, Pakunlu RI, Alakhov VY, Kabanov AV. Pluronic® block copolymers alter apoptotic signal transduction of doxorubicin in drug-resistant cancer cells. J Control Release 2005, 105: 269–278
  • Miyake K, Hirayama F, Uekama K. Solubility and mass and nuclear magnetic resonance spectroscopic studies on interaction of cyclosporin A with dimethyl-alpha- and -beta-cyclodextrins in aqueous solution. J Pharm Sci 1999, 88: 39–45
  • Mukerjee P. Micellar properties of drugs—micellar and non-micellar patterns of self-association of hydrophobic solutes of different molecular-structures—monomer fraction, availability, and misuses of micellar hypothesis. J Pharm Sci 1974, 63: 972–981
  • Mulhaupt R. Hermann Staudinger and the origin of macromolecular chemistry. Angew Chem Int Ed 2004, 43: 1054–1063
  • Nasongkla N, Shuai X, Ai H, Weinberg BD, Pink J, Boothman DA, Gao JM. cRGD-functionalized polymer micelles for targeted doxorubicin delivery. Angew Chem Int Ed 2004, 43: 6323–6327
  • Noguchi Y, Wu J, Duncan R, Strohalm J, Ulbrich K, Akaike T, Maeda H. Early phase tumor accumulation of macromolecules: A great difference in clearance rate between tumor and normal tissues. Jpn J Cancer Res 1998, 89: 307–314
  • Panyam J, Sahoo SK, Prabha S, Bargar T, Labhasetwar V. Fluorescence and electron microscopy probes for cellular and tissue uptake of poly(d,l-lactide-co-glycolide) nanoparticles. Int J Pharm 2003, 262: 1–11
  • Park YJ, Lee JY, Chang YS, Jeong JM, Chung JK, Lee MC, Park KB, Lee SJ. Radioisotope carrying polyethyleneoxide polycaprolactone copolymer micelles for targetable bone imaging. Biomaterials 2002, 23: 873–879
  • Petrov P, Bozukov M, Tsvetanov CB. Innovative approach for stabilizing poly(ethylene oxide)–b–poly(propylene oxide)–b–poly(ethylene oxide) micelles by forming nano-sized networks in the micelle. J Mater Chem 2005, 15: 1481–1486
  • Prabha S, Zhou WZ, Panyam J, Labhasetwar V. Size dependency of nanoparticle-mediated gene transfection: Studies with fractionated nanoparticles. Int J Pharm 2002, 244: 105–115
  • Pratten MK, Cable HC, Ringsdorf H, Lloyd JB. Adsorptive pinocytosis of polycationic co-polymers of vinylpyrrolidone with vinylamine by rat yolk-sac and rat peritoneal macrophage. Biochim Biophys Acta 1982, 719: 424–430
  • Pratten MK, Lloyd JB, Horpel G, Ringsdorf H. Micelle-forming block copolymers—pinocytosis by macrophages and interaction with model membranes. Makromol Chem Macromol Chem Phys 1985, 186: 725–733
  • Rapoport N, Marin AP, Timoshin AA. Effect of a polymeric surfactant on electron transport in HL-60 cells. Arch Biochem Biophys 2000, 384: 100–108
  • Rapoport N, Marin A, Luo Y, Prestwich GD, Muniruzzaman M. Intracellular uptake and trafficking of Pluronic® micelles in drug-sensitive and MDR cells: Effect on the intracellular drug localization. J Pharm Sci 2002, 91: 157–170
  • Rejman J, Oberle V, Zuhorn IS, Hoekstra D. Size-dependent internalization of particles via the pathways of clathrin-and caveolae-mediated endocytosis. Biochem J 2004, 377: 159–169
  • Riess G. Micellization of block copolymers. Prog Polym Sci 2003, 28: 1107–1170
  • Ringsdorf H. Polymer drugs on a molecular-level and cellular level. Am Chem Soc 1980, 180, 46-ORPL
  • Ringsdorf H. Hermann Staudinger and the future of polymer research: Jubilees—beloved occasions for cultural piety. Angew Chem Int Ed 2004, 43: 1064–1076
  • Ringsdorf H. (Special issue in honour of Dr Helmut Ringsdorf) Lifetime Achievement Award. J Drug Target 2006; 14(7)
  • Ringsdorf H, Schlarb B, Venzmer J. Molecular architecture and function of polymeric oriented systems—models for the study of organization, surface recognition, and dynamics of biomembranes. Angew Chem Int Ed Engl 1988, 27: 113–158
  • Rosler A, Vandermeulen GWM, Klok HA. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv Drug Deliv Rev 2001, 53: 95–108
  • Sakai T, Alexandridis P. Single-step synthesis and stabilization of metal nanoparticles in aqueous Pluronic® block copolymer solutions at ambient temperature. Langmuir 2004, 20: 8426–8430
  • Savić R, Luo LB, Eisenberg A, Maysinger D. Micellar nanocontainers distribute to defined cytoplasmic organelles. Science 2003, 300: 615–618
  • Savić R, Azzam T, Eisenberg A, Maysinger D. Assessment of the integrity of poly(caprolactone)–b–poly(ethylene oxide) micelles under biological conditions: A fluorogenic-based approach. Langmuir 2006a, 22: 3570–3578
  • Savić R, Azzam T, Eisenberg A, Maysinger D. Langmuir. Am Chem Soc 2006b, http://pubs3.acs.org/acs /journals/doilookup?in_doi = 10.1021/la0531998, Table of Contents Graphic, Copyright 2006
  • Schreier S, Malheiros SVP, de Paula E. Surface active drugs: Self-association and interaction with membranes and surfactants. Physicochemical and biological aspects. Biochim Biophys Acta Biomembr 2000, 1508: 210–234
  • Shuai XT, Ai H, Nasongkla N, Kim S, Gao JM. Micellar carriers based on block copolymers of poly(e-caprolactone) and poly(ethylene glycol) for doxorubicin delivery. J Control Release 2004a, 98: 415–426
  • Shuai XT, Merdan T, Schaper AK, Xi F, Kissel T. Core cross-linked polymeric micelles as paclitaxel carriers. Bioconjug Chem 2004b, 15: 441–448
  • Sidorov SN, Bronstein LM, Kabachii YA, Valetsky PM, Soo PL, Maysinger D, Eisenberg A. Influence of metalation on the morphologies of poly(ethylene oxide)–block–poly(4-vinylpyridine) block copolymer micelles. Langmuir 2004, 20: 3543–3550
  • Sigma Aldrich Inc. 2003. Datasheet A8380.
  • Small DM. The bile acids: Chemistry, physiology and metabolism, PP Nair, D Kritchevsky. Plenum Press, New York 1971; 249–356
  • Steele JC, Jr., Tanford C, Reynolds JA. Determination of partial specific volumes for lipid-associated proteins. Methods Enzymol 1978, 48: 11–23
  • Taillefer J, Brasseur N, van Lier JE, Lenaerts V, Le Garrec D, Leroux JC. In vitro and in vivo evaluation of pH-responsive polymeric micelles in a photodynamic cancer therapy model. J Pharm Pharmacol 2001, 53: 155–166
  • Tang Y, Liu SY, Armes SP, Billingham NC. Solubilization and controlled release of a hydrophobic drug using novel micelle-forming ABC triblock copolymers. Biomacromolecules 2003, 4: 1636–1645
  • Torchilin VP. Structure and design of polymeric surfactant based drug delivery systems. J Control Release 2001, 73: 137–172
  • Torchilin VP, Lukyanov AN, Gao ZG, Papahadjopoulos-Sternberg B. Immunomicelles: Targeted pharmaceutical carriers for poorly soluble drugs. Proc Natl Acad Sci USA 2003, 100: 6039–6044
  • Twaites B, Alarcon CD, Alexander C. Synthetic polymers as drugs and therapeutics. J Mater Chem 2005, 15: 441–455
  • Vamvakaki M, Papoutsakis L, Katsamanis V, Afchoudia T, Fragouli PG, Iatrou H, Hadjichristidis N, Armes SP, Sidorov S, Zhirov D, Zhirov V, Kostylev M, Bronstein LM, Anastasiadis SH. Anastasiadis SH. 2005. Micellization in pH-sensitive amphiphilic block copolymers in aqueous media and the formation of metal nanoparticles. Faraday Discuss 2005, 128: 129–147
  • van Stam J, Creutz S, De Schryver FC, Jerome R. Tuning of the exchange dynamics of unimers between block copolymer micelles with temperature, cosolvents, and cosurfactants. Macromolecules 2000, 33: 6388–6395
  • Venne A, Li SM, Mandeville R, Kabanov A, Alakhov V. Hypersensitizing effect of Pluronic® L61 on cytotoxic activity, transport, and subcellular distribution of doxorubicin in multiple drug-resistant cells. Cancer Res 1996, 56: 3626–3629
  • Wallrabe H, Periasamy A. Imaging protein molecules using FRET and FLIM microscopy. Curr Opin Biotechnol 2005, 16: 19–27
  • Whitesides GM, Grzybowski B. Self-assembly at all scales. Science 2002, 295: 2418–2421
  • Xu PS, Tang HD, Li SY, Ren J, Van Kirk E, Murdoch WJ, Radosz M, Shen YQ. Enhanced stability of core-surface cross-linked micelles fabricated from amphiphilic brush copolymers. Biomacromolecules 2004, 5: 1736–1744
  • Yamamoto Y, Yasugi K, Harada A, Nagasaki Y, Kataoka K. Temperature-related change in the properties relevant to drug delivery of poly(ethylene glycol)–poly(d,l-lactide) block copolymer micelles in aqueous milieu. J Control Release 2002, 82: 359–371
  • Yoo HS, Park TG. Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA–PEG block copolymer. J Control Release 2001, 70: 63–70
  • Yoo HS, Park TG. Folate receptor targeted biodegradable polymeric doxorubicin micelles. J Control Release 2004, 96: 273–283
  • Yoo HS, Lee EA, Park TG. Doxorubicin-conjugated biodegradable polymeric micelles having acid-cleavable linkages. J Control Release 2002, 82: 17–27
  • Zastre J, Jackson J, Bajwa M, Liggins R, Iqbal F, Burt H. Enhanced cellular accumulation of a P-glycoprotein substrate, rhodamine-123, by Caco-2 cells using low molecular weight methoxypolyethylene glycol–block–polycaprolactone diblock copolymers. Eur J Pharm Biopharm 2002, 54: 299–309
  • Zastre J, Jackson J, Burt H. Evidence for modulation of P-glycoprotein-mediated efflux by methoxypolyethylene glycol–block–polycaprolactone amphiphilic diblock copolymers. Pharm Res 2004, 21: 1489–1497
  • Zauner W, Farrow NA, Haines AMR. In vitro uptake of polystyrene microspheres: Effect of particle size, cell line and cell density. J Control Release 2001, 71: 39–51
  • Zeng FQ, Liu JB, Allen C. Synthesis and characterization of biodegradable poly(ethylene glycol)–block–poly(5-benzyloxytrimethylene carbonate) copolymers for drug delivery. Biomacromolecules 2004, 5: 1810–1817
  • Zhang LF, Eisenberg A. Multiple morphologies of crew-cut aggregates of polystyrene–b–poly(acrylic acid) block-copolymers. Science 1995, 268: 1728–1731
  • Zhang LF, Yu K, Eisenberg A. Ion-induced morphological changes in “crew-cut” aggregates of amphiphilic block copolymers. Science 1996, 272: 1777–1779

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.