877
Views
153
CrossRef citations to date
0
Altmetric
Research Article

Polymeric micelles for drug targeting

, , &
Pages 553-584 | Received 16 Apr 2007, Accepted 25 Jun 2007, Published online: 08 Oct 2008

References

  • Angiotech Pharmaceuticals, Inc, website: http://www.angiotech.com, in: Angiotech Pharmaceuticals, Inc. website.
  • Alexandridis P, Lindman B. Amphiphilic block copolymers-self assembly and application. Elsevier, Amsterdam 2000
  • Aliabadi HM, Lavasanifar A. Polymeric micelles for drug delivery. Expert Opin Drug Deliv 2006; 3: 139–162
  • Ashwell G, Harford J. Carbohydrate-specific receptors of the liver. Annu Rev Biochem 1982; 51: 531–554
  • Bae Y, Fukushima S, Harada A, Kataoka K. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: Polymeric micelles that are responsive to intracellular pH change. Angew Chem Int Ed Engl 2003; 42: 4640–4643
  • Bae Y, Jang WD, Nishiyama N, Fukushima S, Kataoka K. Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery. Mol Biosyst 2005a; 1: 242–250
  • Bae Y, Nishiyama N, Fukushima S, Koyama H, Yasuhiro M, Kataoka K. Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: Tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjug Chem 2005b; 16: 122–130
  • Benns JM, Choi JS, Mahato RI, Park JS, Kim SW. pH-sensitive cationic polymer gene delivery vehicle: N-Ac-poly(l-histidine)-graft-poly(l-lysine) comb shaped polymer. Bioconjug Chem 2000; 11: 637–645
  • Bogdanov A, Jr, Wright SC, Marecos EM, Bogdanova A, Martin C, Petherick P, Weissleder R. A long-circulating co-polymer in passive targeting to solid tumors. J Drug Target 1997; 4: 321–330
  • Boussif O, Lezoualch F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo—polyethylenimine. Proc Natl Acad Sci USA 1995; 92: 7297–7301
  • Brazel CS, Peppas NA. Pulsatile local delivery of thrombolytic and antithrombotic agents using poly(N-isopropylacrylamide-co-methacrylic acid) hydrogels. J Control Release 1996; 39: 57–64
  • Cammas S, Suzuki K, Sone C, Sakurai Y, Kataoka K, Okano T. Thermo-responsive polymer nanoparticles with a core-shell micelle structure as site-specific drug carriers. J Control Release 1997; 48: 157–164
  • Chen G, Hoffman AS. Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH. Nature 1995; 373: 49–52
  • Chung JE, Yokoyama M, Aoyagi T, Sakurai Y, Okano T. Effect of molecular architecture of hydrophobically modified poly(N-isopropylacrylamide) on the formation of thermoresponsive core-shell micellar drug carriers. J Control Release 1998; 53: 119–130
  • Chung JE, Yokoyama M, Yamato M, Aoyagi T, Sakurai Y, Okano T. Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly(N-isopropylacrylamide) and poly(butylmethacrylate). J Control Release 1999; 62: 115–127
  • Chung JE, Yokoyama M, Okano T. Inner core segment design for drug delivery control of thermo-responsive polymeric micelles. J Control Release 2000; 65: 93–103
  • Collins D, Maxfield F, Huang L. Immunoliposomes with different acid sensitivities as probes for the cellular endocytic pathway. Biochim Biophys Acta 1989; 987: 47–55
  • Crile G. Selective destruction of cancers after exposure to heat. Ann Surg 1962; 156: 404–407
  • Croy SR, Kwon GS. Polymeric micelles for drug delivery. Curr Pharm Des 2006; 12: 4669–4684
  • Danson S, Ferry D, Alakhov V, Margison J, Kerr D, Jowle D, Brampton M, Halbert G, Ranson M. Phase I dose escalation and pharmacokinetic study of pluronic polymer-bound doxorubicin (SP1049C) in patients with advanced cancer. Br J Cancer 2004; 90: 2085–2091
  • de Duve C, de Barsy T, Poole B, Trouet A, Tulkens P, Van Hoof F. Commentary lysosomotropic agents. Biochem Pharmacol 1974; 23: 2495–2531
  • Doi K, Akaike T, Horie H, Noguchi Y, Fujii S, Beppu T, Ogawa M, Maeda H. Excessive production of nitric oxide in rat solid tumor and its implication in rapid tumor growth. Cancer 1996; 77: 1598–1604
  • Dong LC, Hoffman AS. A novel-approach for preparation of pH-sensitive hydrogels for enteric drug delivery. J Control Release 1991; 15: 141–152
  • Duncan R, Seymour LCW, Scarlett L, Lloyd JB, Rejmanova P, Kopecek J. Fate of N-(2-hydroxypropyl)methacrylamide copolymers with pendent galactosamine residues after intravenous administration to rats. Biochim Biophys Acta 1986; 880: 62–71
  • Edens HA, Levi BP, Jaye DL, Walsh S, Reaves TA, Turner JR, Nusrat A, Parkos CA. Neutrophil transepithelial migration: Evidence for sequential, contact-dependent signaling events and enhanced paracellular permeability independent of transjunctional migration. J Immunol 2002; 169: 476–486
  • Elliott RL, Elliott MC, Wang F, Head JF. Breast carcinoma and the role of iron metabolism. A cytochemical, tissue culture, and ultrastructural study. Ann NY Acad Sci 1993; 698: 159–166
  • Engin K, Leeper DB, Cater JR, Thistlethwaite AJ, Tupchong L, McFarlane JD. Extracellular pH distribution in human tumours. Int J Hyperthermia 1995; 11: 211–216
  • Flynn HG, Church CC. Erratum: Transient pulsations of small gas bubbles in water. J Acoust Soc Am 1988; 84: 1863–1876, [J Acoust Soc Am 84: 985–998 (1988); corrected and republished]
  • Francis MF, Cristea M, Winnik FM. Exploiting the Vitamin B12 pathway to enhance oral drug delivery via polymeric micelles. Biomacromolecules 2005a; 6: 2462–2467
  • Francis MF, Cristea M, Yang Y, Winnik FM. Engineering polysaccharide-based polymeric micelles to enhance permeability of cyclosporin A across Caco-2 cells. Pharm Res 2005b; 22: 209–219
  • Fukushima S, Miyata K, Nishiyama N, Kanayama N, Yamasaki Y, Kataoka K. PEGylated polyplex micelles from triblock catiomers with spatially ordered layering of condensed pDNA and buffering units for enhanced intracellular gene delivery. J Am Chem Soc 2005; 127: 2810–2811
  • Gao Z, Lukyanov AN, Chakilam AR, Torchilin VP. PEG-PE/phosphatidylcholine mixed immunomicelles specifically deliver encapsulated taxol to tumor cells of different origin and promote their efficient killing. J Drug Target 2003; 11: 87–92
  • Gao Z-G, Fain HD, Rapoport N. Controlled and targeted tumor chemotherapy by micellar-encapsulated drug and ultrasound. J Control Release 2005a; 102: 203–222
  • Gao ZG, Lee DH, Kim DI, Bae YH. Doxorubicin loaded pH-sensitive micelle targeting acidic extracellular pH of human ovarian A2780 tumor in mice. J Drug Target 2005b; 13: 391–397
  • Gillies ER, Frechet JMJ. A new approach towards acid sensitive copolymer micelles for drug delivery. Chem Commun 2003; 1640–1641
  • Gillies ER, Frechet JM. pH-Responsive copolymer assemblies for controlled release of doxorubicin. Bioconjug Chem 2005; 16: 361–368
  • Gillies ER, Jonsson TB, Frechet JM. Stimuli responsive supramolecular assemblies of linear-dendritic copolymers. J Am Chem Soc 2004; 126: 11936–11943
  • Goren D, Horowitz AT, Tzemach D, Tarshish M, Zalipsky S, Gabizon A. Nuclear delivery of doxorubicin via folate-targeted liposomes with bypass of multidrug-resistance efflux pump. Clin Cancer Res 2000; 6: 1949–1957
  • Goto M, Yura H, Chang CW, Kobayashi A, Shinoda T, Maeda A, Kojima S, Kobayashi K, Akaike T. Lactose-carrying polystyrene as a drug carrier—investigation of body distributions to parenchymal liver-cells using I-125 labeled lactose-carrying polystyrene. J Control Release 1994; 28: 223–233
  • Greenfield RS, Kaneko T, Daues A, Edson MA, Fitzgerald KA, Olech LJ, Grattan JA, Spitalny GL, Braslawsky GR. Evaluation in vitro of adriamycin immunoconjugates synthesized using an acid-sensitive hydrazone linker. Cancer Res 1990; 50: 6600–6607
  • Hahn GM, Strande DP. Cytotoxic effects of hyperthermia and adriamycin on Chinese hamster cells. J Natl Cancer Inst 1976; 57: 1063–1067
  • Hales M, Barner-Kowollik C, Davis TP, Stenzel MH. Shell-cross-linked vesicles synthesized from block copolymers of poly(d,l-lactide) and Poly(N-isopropyl acrylamide) as thermoresponsive nanocontainers. Langmuir 2004; 20: 10809–10817
  • Hamaguchi T, Matsumura Y, Suzuki M, Shimizu K, Goda R, Nakamura I, Nakatomi I, Yokoyama M, Kataoka K, Kakizoe T. NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel. Br J Cancer 2005; 92: 1240–1246
  • Han SK, Na K, Bae YH. Sulfonamide based pH-sensitive polymeric micelles: Physicochemical characteristics and pH-dependent aggregation. Colloids Surf A: Physicochem Eng Aspects 2003; 214: 49–59
  • Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, Jain RK, McDonald DM. Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 2000; 156: 1363–1380
  • Heise A, Hedrick JL, Frank CW, Miller RD. Starlike block copolymers with amphiphilic arms as models for unimolecular micelles. J Am Chem Soc 1999; 121: 8647–8648
  • Herlyn M, Menrad A, Koprowski H. Structure, function, and clinical significance of human tumor antigens. J Natl Cancer Inst 1990; 82: 1883–1889
  • Hruby M, Konak C, Ulbrich K. Polymeric micellar pH-sensitive drug delivery system for doxorubicin. J Control Release 2005; 103: 137–148
  • Huang L, Ozato K, Pagano RE. Interactions of phospholipid vesicles with murine lymphocytes.1. Vesicle-cell adsorption and fusion as alternate pathways of uptake. Membr Biochem 1978; 1: 1–25
  • Husseini GA, El-Fayoumi RI, O'Neill KL, Rapoport NY, Pitt WG. DNA damage induced by micellar-delivered doxorubicin and ultrasound: Comet assay study. Cancer Lett 2000; 154: 211–216
  • Husseini GA, Christensen DA, Rapoport NY, Pitt WG. Ultrasonic release of doxorubicin from Pluronic P105 micelles stabilized with an interpenetrating network of N,N-diethylacrylamide. J Control Release 2002a; 83: 303–305
  • Husseini GA, Rapoport NY, Christensen DA, Pruitt JD, Pitt WG. Kinetics of ultrasonic release of doxorubicin from pluronic P105 micelles. Colloids Surf B Biointerfaces 2002b; 24: 253–264
  • Husseini GA, Diaz de la Rosa MA, Richardson ES, Christensen DA, Pitt WG. The role of cavitation in acoustically activated drug delivery. J Control Release 2005; 107: 253–261
  • Ishihara K, Iwasaki Y, Ebihara S, Shindo Y, Nakabayashi N. Photoinduced graft polymerization of 2-methacryloyloxyethyl phosphorylcholine on polyethylene membrane surface for obtaining blood cell adhesion resistance. Colloids Surf B Biointerfaces 2000; 18: 325–335
  • Jain RK. Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors. Cancer Res 1990a; 50: 814s–819s
  • Jain RK. Vascular and interstitial barriers to delivery of therapeutic agents in tumors. Cancer Metastasis Rev 1990b; 9: 253–266
  • Jeong Y-I, Seo S-J, Park I-K, Lee H-C, Kang I-C, Akaike T, Cho C-S. Cellular recognition of paclitaxel-loaded polymeric nanoparticles composed of poly([gamma]-benzyl l-glutamate) and poly(ethylene glycol) diblock copolymer endcapped with galactose moiety. Int J Pharm 2005; 296: 151–161
  • Jones MC, Ranger M, Leroux JC. pH-sensitive unimolecular polymeric micelles: Synthesis of a novel drug carrier. Bioconjug Chem 2003; 14: 774–781
  • Jubb AM, Oates AJ, Holden S, Koeppen H. Predicting benefit from anti-angiogenic agents in malignancy. Nat Rev Cancer 2006; 6: 626–635
  • Jule E, Nagasaki Y, Kataoka K. Surface plasmon resonance study on the interaction between lactose-installed poly(ethylene glycol)–poly(d,l-lactide) block copolymer micelles and lectins immobilized on a gold surface. Langmuir 2002; 18: 10334–10339
  • Jule E, Nagasaki Y, Kataoka K. Lactose-installed poly(ethylene glycol)–poly(d,l-lactide) block copolymer micelles exhibit fast-rate binding and high affinity toward a protein bed simulating a cell surface. A surface plasmon resonance study. Bioconjug Chem 2003; 14: 177–186
  • Kabanov AV, Chekhonin VP, Alakhov V, Batrakova EV, Lebedev AS, Melik-Nubarov NS, Arzhakov SA, Levashov AV, Morozov GV, Severin ES, et al. The neuroleptic activity of haloperidol increases after its solubilization in surfactant micelles. Micelles as microcontainers for drug targeting. FEBS Lett 1989; 258: 343–345
  • Kabanov AV, Batrakova EV, Meliknubarov NS, Fedoseev NA, Dorodnich TY, Alakhov VY, Chekhonin VP, Nazarova IR, Kabanov VA. A new class of drug carriers—micelles of poly(oxyethylene)–poly(oxypropylene) block copolymers as microcontainers for drug targeting from blood in brain. J Control Release 1992; 22: 141–157
  • Kakizawa Y, Harada A, Kataoka K. Environment-sensitive stabilization of core-shell structured polyion complex micelle by reversible cross-linking of the core through disulfide bond. J Am Chem Soc 1999; 121: 11247–11248
  • Kakizawa Y, Harada A, Kataoka K. Glutathione-sensitive stabilization of block copolymer micelles composed of antisense DNA and thiolated poly(ethylene glycol)-block-poly(l-lysine): A potential carrier for systemic delivery of antisense DNA. Biomacromolecules 2001; 2: 491–497
  • Kaneko T, Willner D, Monkovic I, Knipe JO, Braslawsky GR, Greenfield RS, Vyas DM. New hydrazone derivatives of adriamycin and their immunoconjugates—a correlation between acid stability and cytotoxicity. Bioconjug Chem 1991; 2: 133–141
  • Kang N, Perron ME, Prud'homme RE, Zhang YB, Gaucher G, Leroux JC. Stereocomplex block copolymer micelles: Core-shell nanostructures with enhanced stability. Nano Lett 2005; 5: 315–319
  • Kataoka K, Matsumoto T, Yokoyama M, Okano T, Sakurai Y, Fukushima S, Okamoto K, Kwon GS. Doxorubicin-loaded poly(ethylene glycol)–poly(beta-benzyl-l-aspartate) copolymer micelles: Their pharmaceutical characteristics and biological significance. J Control Release 2000; 64: 143–153
  • Kennedy JE, Ter Haar GR, Cranston D. High intensity focused ultrasound: Surgery of the future?. Br J Radiol 2003; 76: 590–599
  • Kim TY, Kim DW, Chung JY, Shin SG, Kim SC, Heo DS, Kim NK, Bang YJ. Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin Cancer Res 2004; 10: 3708–3716
  • Kohori F, Sakai K, Aoyagi T, Yokoyama M, Sakurai Y, Okano T. Preparation and characterization of thermally responsive block copolymer micelles comprising poly(N-isopropylacrylamide-b-dl-lactide). J Control Release 1998; 55: 87–98
  • Kohori F, Sakai K, Aoyagi T, Yokoyama M, Yamato M, Sakurai Y, Okano T. Control of adriamycin cytotoxic activity using thermally responsive polymeric micelles composed of poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)-b-poly(-lactide). Colloids Surf B Biointerfaces 1999; 16: 195–205
  • Konno T, Maeda H, Iwai K, Maki S, Tashiro S, Uchida M, Miyauchi Y. Selective targeting of anti-cancer drug and simultaneous image enhancement in solid tumors by arterially administered lipid contrast medium. Cancer 1984; 54: 2367–2374
  • Kost J, Langer R. Responsive polymer systems for controlled delivery of therapeutics. Trends Biotechnol 1992; 10: 127–131
  • Kronke M, Depper JM, Leonard WJ, Vitetta ES, Waldmann TA, Greene WC. Adult T cell leukemia: A potential target for ricin a chain immunotoxins. Blood 1985; 65: 1416–1421
  • Kwon GS, Yokoyama M, Okano T, Sakurai Y, Kataoka K. Enhanced tumor accumulation and prolonged circulation times of micelle-forming poly(ethylene oxide-aspartate) block copolymer–Adriamycin conjugates. J Control Release 1994; 28: 334–335
  • Kwon G, Naito M, Yokoyama M, Okano T, Sakurai Y, Kataoka K. Block copolymer micelles for drug delivery: Loading and release of doxorubicin. J Control Release 1997; 48: 195–201
  • Lavasanifar A, Samuel J, Kwon GS. The effect of fatty acid substitution on the in vitro release of amphotericin B from micelles composed of poly(ethylene oxide)-block-poly(N-hexyl stearate-l-aspartamide). J Control Release 2002a; 79: 165–172
  • Lavasanifar A, Samuel J, Kwon GS. Poly(ethylene oxide)-block-poly(l-amino acid) micelles for drug delivery. Adv Drug Deliv Rev 2002b; 54: 169–190
  • Le Garrec D, Taillefer J, Van Lier JE, Lenaerts V, Leroux JC. Optimizing pH-responsive polymeric micelles for drug delivery in a cancer photodynamic therapy model. J Drug Target 2002; 10: 429–437
  • Leamon CP, Reddy JA. Folate-targeted chemotherapy. Adv Drug Deliv Rev 2004; 56: 1127–1141
  • Lee RJ, Low PS. Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis. J Biol Chem 1994; 269: 3198–3204
  • Lee RJ, Low PS. Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro. Biochim Biophys Acta 1995; 1233: 134–144
  • Lee ES, Na K, Bae YH. Polymeric micelle for tumor pH and folate-mediated targeting. J Control Release 2003a; 91: 103–113
  • Lee ES, Shin HJ, Na K, Bae YH. Poly(l-histidine)-PEG block copolymer micelles and pH-induced destabilization. J Control Release 2003b; 90: 363–374
  • Lee ES, Na K, Bae YH. Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor. J Control Release 2005a; 103: 405–418
  • Lee ES, Na K, Bae YH. Super pH-sensitive multifunctional polymeric micelle. Nano Lett 2005b; 5: 325–329
  • Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 1989; 246: 1306–1309
  • Liu J, Lewis TN, Prausnitz MR. Non-invasive assessment and control of ultrasound-mediated membrane permeabilization. Pharm Res 1998; 15: 918–924
  • Liu HB, Jiang A, Guo JA, Uhrich KE. Unimolecular micelles: Synthesis and characterization of amphiphilic polymer systems. J Polym Sci A Polym Chem 1999; 37: 703–711
  • Liu H, Farrell S, Uhrich K. Drug release characteristics of unimolecular polymeric micelles. J Control Release 2000a; 68: 167–174
  • Liu M, Kono K, Frechet JM. Water-soluble dendritic unimolecular micelles: Their potential as drug delivery agents. J Control Release 2000b; 65: 121–131
  • Liu SQ, Tong YW, Yang YY. Incorporation and in vitro release of doxorubicin in thermally sensitive micelles made from poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)-b-poly(d,l-lactide-co-glycolide) with varying compositions. Biomaterials 2005a; 26: 5064–5074
  • Liu SQ, Tong YW, Yang YY. Thermally sensitive micelles self-assembled from poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)-b-poly(d,l-lactide -co-glycolide) for controlled delivers of paclitaxel. Mol Biosyst 2005b; 1: 158–165
  • Lu Y, Low PS. Immunotherapy of folate receptor-expressing tumors: Review of recent advances and future prospects. J Control Release 2003; 91: 17–29
  • Maeda H. SMANCS and polymer-conjugated macromolecular drugs: Advantages in cancer chemotherapy. Adv Drug Deliv Rev 2001; 46: 169–185
  • Maeda H, Matsumura Y. Tumoritropic and lymphotropic principles of macromolecular drugs. Crit Rev Ther Drug Carrier Syst 1989; 6: 193–210
  • Maeda H, Matsumura Y, Kato H. Purification and identification of [hydroxyprolyl3]bradykinin in ascitic fluid from a patient with gastric cancer. J Biol Chem 1988; 263: 16051–16054
  • Maeda H, Noguchi Y, Sato K, Akaike T. Enhanced vascular permeability in solid tumor is mediated by nitric oxide and inhibited by both new nitric oxide scavenger and nitric oxide synthase inhibitor. Jpn J Cancer Res 1994; 85: 331–334
  • Mahmud A, Xiong XB, Lavasanifar A. Novel self-associating poly(ethylene oxide)-block-poly(ε-caprolactone) block copolymers with functional side groups on the polyester block for drug delivery. Macromolecules 2006; 39: 9419–9428
  • Maki S, Konno T, Maeda H. Image enhancement in computerized tomography for sensitive diagnosis of liver cancer and semiquantitation of tumor selective drug targeting with oily contrast medium. Cancer 1985; 56: 751–757
  • Marin A, Muniruzzaman M, Rapoport N. Mechanism of the ultrasonic activation of micellar drug delivery. J Control Release 2001; 75: 69–81
  • Matsumura Y, Kimura M, Yamamoto T, Maeda H. Involvement of the kinin-generating cascade in enhanced vascular permeability in tumor tissue. Jpn J Cancer Res 1988; 79: 1327–1334
  • Matsumura Y, Maruo K, Kimura M, Yamamoto T, Konno T, Maeda H. Kinin-generating cascade in advanced cancer patients and in vitro study. Jpn J Cancer Res 1991; 82: 732–741
  • Matsumura Y, Hamaguchi T, Ura T, Muro K, Yamada Y, Shimada Y, Shirao K, Okusaka T, Ueno H, Ikeda M, Watanabe N. Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Br J Cancer 2004; 91: 1775–1781
  • Meister A, Anderson ME. Glutathione. Annu Rev Biochem 1983; 52: 711–760
  • Miller MW, Miller DL, Brayman AA. A review of in vitro bioeffects of inertial ultrasonic cavitation from a mechanistic perspective. Ultrasound Med Biol 1996; 22: 1131–1154
  • Miller DL, Pislaru SV, Greenleaf JE. Sonoporation: Mechanical DNA delivery by ultrasonic cavitation. Somat Cell Mol Genet 2002; 27: 115–134
  • Miyata K, Kakizawa Y, Nishiyama N, Harada A, Yamasaki Y, Koyama H, Kataoka K. Block catiomer polyplexes with regulated densities of charge and disulfide cross-linking directed to enhance gene expression. J Am Chem Soc 2004; 126: 2355–2361
  • Molema G, Jansen RW, Visser J, Herdewijn P, Moolenaar F, Meijer DKF. Neoglycoproteins as carriers for antiviral drugs—synthesis and analysis of protein drug conjugates. J Med Chem 1991; 34: 1137–1141
  • Muggia FM. Doxorubicin-polymer conjugates: Further demonstration of the concept of enhanced permeability and retention [comment]. Clin Cancer Res 1999; 5: 7–8
  • Munshi N, Rapoport N, Pitt WG. Ultrasonic activated drug delivery from Pluronic P-105 micelles. Cancer Lett 1997; 118: 13–19
  • Murao A, Nishikawa M, Managit C, Wong J, Kawakami S, Yamashita F, Hashida M. Targeting efficiency of galactosylated liposomes to hepatocytes in vivo: Effect of lipid composition. Pharm Res 2002; 19: 1808–1814
  • Nagasaki Y, Yasugi K, Yamamoto Y, Harada A, Kataoka K. Sugar-installed block copolymer micelles: Their preparation and specific interaction with lectin molecules. Biomacromolecules 2001a; 2: 1067–1070
  • Nagasaki Y, Yasugi K, Yamamoto Y, Harada A, Kataoka K. Sugar-installed polymeric micelle for a vehicle of an active targeting drug delivery system. Abstr Paper Am Chem Soc 2001b; 221: U434
  • Nakanishi T, Fukushima S, Okamoto K, Suzuki M, Matsumura Y, Yokoyama M, Okano T, Sakurai Y, Kataoka K. Development of the polymer micelle carrier system for doxorubicin. J Control Release 2001; 74: 295–302
  • Nakayama M, Okano T. Polymer terminal group effects on properties of thermoresponsive polymeric micelles with controlled outer-shell chain lengths. Biomacromolecules 2005; 6: 2320–2327
  • Nasongkla N, Shuai X, Ai H, Weinberg BD, Pink J, Boothman DA, Gao JM. cRGD-functionalized polymer micelles for targeted doxorubicin delivery. Angew Chem Int Ed 2004; 43: 6323–6327
  • Nasongkla N, Bey E, Ren JM, Ai H, Khemtong C, Guthi JS, et al. Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Letters 2006; 6((11))2427–2430
  • Nelson JL, Roeder BL, Carmen JC, Roloff F, Pitt WG. Ultrasonically activated chemotherapeutic drug delivery in a rat model. Cancer Res 2002; 62: 7280–7283
  • Nishiyama N, Kataoka K. Nanostructured devices based on block copolymer assemblies for drug delivery: Designing structures for enhanced drug function. Polymer therapeutics Ii: Polymers as drugs, conjugates and gene delivery systems. 2006; 67–101
  • Nyborg WL. Ultrasonic microstreaming and related phenomena. Br J Cancer Suppl 1982; 45: 156–160
  • Oda Y, Kasai K, Ishii S. Studies on the specific interaction of concanavalin A and saccharides by affinity chromatography. Application of quantitative affinity chromatography to a multivalent system. J Biochem (Tokyo) 1981; 89: 285–296
  • Oishi M, Sasaki S, Nagasaki Y, Kataoka K. pH-responsive oligodeoxynucleotide (ODN)–poly(ethylene glycol) conjugate through acid-labile beta-thiopropionate linkage: Preparation and polyion complex micelle formation. Biomacromolecules 2003; 4: 1426–1432
  • Oishi M, Hayama T, Akiyama Y, Takae S, Harada A, Yarnasaki Y, Nagatsugi F, Sasaki S, Nagasaki Y, Kataoka K. Supramolecular assemblies for the cytoplasmic delivery of antisense oligodeoxynucleotide: Polylon complex (PIC) micelles based on poly(ethylene glycol)–SS–oligodeoxynucleotide conjugate. Biomacromolecules 2005a; 6: 2449–2454
  • Oishi M, Nagasaki Y, Itaka K, Nishiyama N, Kataoka K. Lactosylated poly(ethylene glycol)–siRNA conjugate through acid-labile beta-thiopropionate linkage to construct pH-sensitive polyion complex micelles achieving enhanced gene silencing in hepatoma cells. J Am Chem Soc 2005b; 127: 1624–1625
  • Oishi M, Nagatsugi F, Sasaki S, Nagasaki Y, Kataoka K. Smart polyion complex micelles for targeted intracellular delivery of PEGylated antisense oligonucleotides containing acid-labile linkages. Chembiochem 2005c; 6: 718–725
  • Ojugo AS, McSheehy PM, McIntyre DJ, McCoy C, Stubbs M, Leach MO, Judson IR, Griffiths JR. Measurement of the extracellular pH of solid tumours in mice by magnetic resonance spectroscopy: A comparison of exogenous (19)F and (31)P probes. NMR Biomed 1999; 12: 495–504
  • Okano T, Yamada N, Sakai H, Sakurai Y. A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide). J Biomed Mater Res 1993; 27: 1243–1251
  • Okano T, Yamada N, Okuhara M, Sakai H, Sakurai Y. Mechanism of cell detachment from temperature-modulated, hydrophilic-hydrophobic polymer surfaces. Biomaterials 1995; 16: 297–303
  • Omelyanenko V, Kopekova P, Gentry C, Kopeek J. Targetable HPMA copolymer–adriamycin conjugates. Recognition, internalization, and subcellular fate. J Control Release 1998; 53: 25–37
  • Opanasopit P, Sakai M, Nishikawa M, Kawakami S, Yamashita F, Hashida M. Inhibition of liver metastasis by targeting of immunomodulators using mannosylated liposome carriers. J Control Release 2002; 80: 283–294
  • Osada K, Kataoka K. Drug and gene delivery based on supramolecular assembly of PEG-polypeptide hybrid block copolymers. Peptide hybrid polymers. 2006; 113–153
  • Page D, Roy R. Optimizing lectin-carbohydrate interactions: Improved binding of divalent alpha-mannosylated ligands towards concanavalin A. Glycoconj J 1997; 14: 345–356
  • Pan XQ, Wang H, Lee RJ. Antitumor activity of folate receptor-targeted liposomal doxorubicin in a KB oral carcinoma murine xenograft model. Pharm Res 2003; 20: 417–422
  • Park EK, Kim SY, Lee SB, Lee YM. Folate-conjugated methoxy poly(ethylene glycol)/poly(epsilon-caprolactone) amphiphilic block copolymeric micelles for tumor-targeted drug delivery. J Control Release 2005; 109: 158–168
  • Pinski SL, Yao Q, Epstein AE, Lancaster S, Greene HL, Pacifico A, Cook JR, Jadonath R, Marinchak RA, Cooper RAS, Dailey SM, Kay GN, Plumb VJ, Bubien RS, Knotts SM, McKenna PT, Greer GS, Santoro IH, Swaim J, Whittle S, Rizo-Patron C, Belco KM, Payne P, Arnold DJ, Zhu WX, Pratt CM, Kabell G, Kirchhoffer JB, Warwick D, Burkott B, Tomaszewski D, Podrid PJ, Fuchs TT, Mazur M, Friedman PL, Stevenson WG, Swat MM, Ganz LI, Sweeney MO, Shea JB, Brodsky MA, Allen BJ, Ehrlich SS, Wolff LJ, Macari-Hinson MM, Wise G, Duff H, Gillis A, Mitchell B, Rothschild J, Sheldon R, Cassidy P, Scheinman M, Eisenberg S, Epstein L, Fitzpatrick A, Griffin G, Lee R, Lesh M, Namekawa-Wong M, Wong M, Wilkoff BL, Cross JA, Shewchik JM, Carlson MD, Rosenbaum DS, Lewis WR, Biblo LA, Mackall JA, Waldo AL, Coromilas J, Bigger JT, Jr., Livelli FD, Jr., Reiffel JA, Hickey K, Berns E, Lippman N, Barry MB, Carney HM, Russo AM, Waxman HL, Stubin CA, Morrissey JM, Raspa DH, Chilson DA, Lessmeier TJ, Pochis WT, Baxter JM, Luceri RM, Zilo P, Weiss DN, Jonas A, Vardeman L, Schwartz KM, Asbell C, Curtis AB, Conti JB, Nelson C, Cannom DS, et al. Determinants of outcome in patients with sustained ventricular tachyarrhythmias: The antiarrhythmics versus implantable defibrillators (AVID) study registry. Am Heart J 2000; 139: 804–813
  • Pitt WG, Husseini GA, Staples BJ. Ultrasonic drug delivery—a general review. Expert Opin Drug Deliv 2004; 1: 37–56
  • Pruitt JD, Pitt WG. Sequestration and ultrasound-induced release of doxorubicin from stabilized Pluronic P105 micelles. Drug Deliv 2002; 9: 253–258
  • Pruitt JD, Husseini G, Rapoport N, Pitt MG. Stabilization of pluronic P-105 micelles with an interpenetrating network of N,N-diethylacrylamide. Macromolecules 2000; 33: 9306–9309
  • Rapoport N. Stabilization and activation of Pluronic micelles for tumor-targeted drug delivery. Colloids Surf B Biointerfaces 1999; 16: 93–111
  • Rapoport N. Combined cancer therapy by micellar-encapsulated drug and ultrasound. Int J Pharm 2004; 277: 155–162
  • Rapoport N, Marin A, Luo Y, Prestwich GD, Muniruzzaman MD. Intracellular uptake and trafficking of Pluronic micelles in drug-sensitive and MDR cells: Effect on the intracellular drug localization. J Pharm Sci 2002; 91: 157–170
  • Rapoport N, Pitt WG, Sun H, Nelson JL. Drug delivery in polymeric micelles: From in vitro to in vivo. J Control Release 2003; 91: 85–95
  • Rapoport NY, Christensen DA, Fain HD, Barrows L, Gao Z. Ultrasound-triggered drug targeting of tumors in vitro and in vivo. Ultrasonics 2004; 42: 943–950
  • Reddy JA, Low PS. Enhanced folate receptor-mediated gene therapy using a novel pH-sensitive lipid formulation. J Control Release 2000; 64: 27–37
  • Reichman HR, Farrell CL, Del Maestro RF. Effects of steroids and nonsteroid anti-inflammatory agents on vascular permeability in a rat glioma model. J Neurosurg 1986; 65: 233–237
  • Ringsdorf H, Simon J, Winnik FM. Hydrophobically-modified poly(N-isopropylacrylamides) in water—a look by fluorescence techniques at the heat-induced phase-transition. Macromolecules 1992; 25: 7306–7312
  • Sant VP, Smith D, Leroux JC. Novel pH-sensitive supramolecular assemblies for oral delivery of poorly water soluble drugs: Preparation and characterization. J Control Release 2004; 97: 301–312
  • Sant VP, Smith D, Leroux JC. Enhancement of oral bioavailability of poorly water-soluble drugs by poly(ethylene glycol)-block-poly(alkyl acrylate-co-methacrylic acid) self-assemblies. J Control Release 2005; 104: 289–300
  • Sawant RM, Hurley JP, Salmaso S, Kale A, Tolcheva E, Levchenko TS, Torchilin VP. SMART drug delivery systems: Double-targeted pH-responsive pharmaceutical nanocarriers. Bioconjug Chem 2006; 17: 943–949
  • Schiffelers RM, Storm G, Bakker-Woudenberg IA. Host factors influencing the preferential localization of sterically stabilized liposomes in Klebsiella pneumoniae-infected rat lung tissue. Pharm Res 2001; 18: 780–787
  • Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 1983; 219: 983–985
  • Sethuraman VA, Bae YH. TAT peptide-based micelle system for potential active targeting of anti-cancer agents to acidic solid tumors. J Control Release 2006
  • Shen WC, Ryser HJ. cis-Aconityl spacer between daunomycin and macromolecular carriers: A model of pH-sensitive linkage releasing drug from a lysosomotropic conjugate. Biochem Biophys Res Commun 1981; 102: 1048–1054
  • Shivers RR, Wijsman JA. Blood-brain barrier permeability during hyperthermia. Prog Brain Res 1998; 115: 413–424
  • Shuai X, Ai H, Nasongkla N, Kim S, Gao J. Micellar carriers based on block copolymers of poly(epsilon-caprolactone) and poly(ethylene glycol) for doxorubicin delivery. J Control Release 2004a; 98: 415–426
  • Shuai X, Merdan T, Schaper AK, Xi F, Kissel T. Core-cross-linked polymeric micelles as paclitaxel carriers. Bioconjug Chem 2004b; 15: 441–448
  • Singh M. Transferrin as a targeting ligand for liposomes and anticancer drugs. Curr Pharm Des 1999; 5: 443–451
  • van Sluis R, Bhujwalla ZM, Raghunand N, Ballesteros P, Alvarez J, Cerdan S, Galons JP, Gillies RJ. In vivo imaging of extracellular pH using 1H MRSI. Magn Reson Med 1999; 41: 743–750
  • Stolnik S, Illum L, Davis SS. Long circulating microparticulate drug carriers. Adv Drug Deliv Rev 1995; 16: 195–214
  • Sundaram J, Mellein BR, Mitragotri S. An experimental and theoretical analysis of ultrasound-induced permeabilization of cell membranes. Biophys J 2003; 84: 3087–3101
  • Tacker JR, Anderson RU. Delivery of antitumor drug to bladder cancer by use of phase transition liposomes and hyperthermia. J Urol 1982; 127: 1211–1214
  • Taillefer J, Jones MC, Brasseur N, van Lier JE, Leroux JC. Preparation and characterization of pH-responsive polymeric micelles for the delivery of photosensitizing anticancer drugs. J Pharm Sci 2000; 89: 52–62
  • Taillefer J, Brasseur N, van Lier JE, Lenaerts V, Le Garrec D, Leroux JC. In vitro and in vivo evaluation of pH-responsive polymeric micelles in a photodynamic cancer therapy model. J Pharm Pharmacol 2001; 53: 155–166
  • Takei YG, Aoki T, Sanui K, Ogata N, Okano T, Sakurai Y. Temperature-responsive bioconjugates. 2. Molecular design for temperature-modulated bioseparations. Bioconjug Chem 1993; 4: 341–346
  • Takei YG, Aoki T, Sanui K, Ogata N, Sakurai Y, Okano T. Temperature-modulated platelet and lymphocyte interactions with poly(N-isopropylacrylamide)-grafted surfaces. Biomaterials 1995; 16: 667–673
  • Tang Y, Liu SY, Armes SP, Billingham NC. Solubilization and controlled release of a hydrophobic drug using novel micelle-forming ABC triblock copolymers. Biomacromolecules 2003; 4: 1636–1645
  • Torchilin VP. Structure and design of polymeric surfactant-based drug delivery systems. J Control Release 2001; 73: 137–172
  • Torchilin VP. Targeted polymeric micelles for delivery of poorly soluble drugs. Cell Mol Life Sci 2004; 61: 2549–2559
  • Torchilin VP. Fluorescence microscopy to follow the targeting of liposomes and micelles to cells and their intracellular fate. Adv Drug Deliv Rev 2005; 57: 95–109
  • Torchilin VP, Shtilman MI, Trubetskoy VS, Whiteman K, Milstein AM. Amphiphilic vinyl polymers effectively prolong liposome circulation time in vivo. Biochim Biophys Acta 1994; 1195: 181–184
  • Torchilin VP, Levchenko TS, Lukyanov AN, Khaw BA, Klibanov AL, Rammohan R, Samokhin GP, Whiteman KR. p-Nitrophenylcarbonyl-PEG-PE-liposomes: Fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains via p-nitrophenylcarbonyl groups. Biochim Biophys Acta 2001; 1511: 397–411
  • Torchilin VP, Lukyanov AN, Gao Z, Papahadjopoulos-Sternberg B. Immunomicelles: Targeted pharmaceutical carriers for poorly soluble drugs. Proc Natl Acad Sci USA 2003; 100: 6039–6044
  • Trowbridge IS. Transferrin receptor as a potential therapeutic target. Prog Allergy 1988; 45: 121–146
  • Uchino H, Matsumura Y, Negishi T, Koizumi F, Hayashi T, Honda T, Nishiyama N, Kataoka K, Naito S, Kakizoe T. Cisplatin-incorporating polymeric micelles (NC-6004) can reduce nephrotoxicity and neurotoxicity of cisplatin in rats. Br J Cancer 2005; 93: 678–687
  • Unezaki S, Maruyama K, Takahashi N, Koyama M, Yuda T, Suginaka A, Iwatsuru M. Enhanced delivery and antitumor activity of doxorubicin using long-circulating thermosensitive liposomes containing amphipathic polyethylene glycol in combination with local hyperthermia. Pharm Res 1994; 11: 1180–1185
  • Vega J, Ke S, Fan Z, Wallace S, Charsangavej C, Li C. Targeting doxorubicin to epidermal growth factor receptors by site-specific conjugation of C225 to poly(l-glutamic acid) through a polyethylene glycol spacer. Pharm Res 2003; 20: 826–832
  • Vinogradov SV, Bronich TK, Kabanov AV. Self-assembly of polyamine-poly(ethylene glycol) copolymers with phosphorothioate oligonucleotides. Bioconjug Chem 1998; 9: 805–812
  • Vinogradov S, Batrakova E, Li S, Kabanov A. Polyion complex micelles with protein-modified corona for receptor-mediated delivery of oligonucleotides into cells. Bioconjug Chem 1999; 10: 851–860
  • Wakebayashi D, Nishiyama N, Yamasaki Y, Itaka K, Kanayama N, Harada A, Nagasaki Y, Kataoka K. Lactose-conjugated polyion complex micelles incorporating plasmid DNA as a targetable gene vector system: Their preparation and gene transfecting efficiency against cultured HepG2 cells. J Control Release 2004; 95: 653–664
  • Wang CY, Huang L. Polyhistidine mediates an acid-dependent fusion of negatively charged liposomes. Biochemistry 1984; 23: 4409–4416
  • Winnik FM, Davidson AR, Hamer GK, Kitano H. Amphiphilic poly(N-isopropylacrylamides) prepared by using a lipophilic radical initiator—synthesis and solution properties in water. Macromolecules 1992; 25: 1876–1880
  • Wu J, Akaike T, Maeda H. Modulation of enhanced vascular permeability in tumors by a bradykinin antagonist, a cyclooxygenase inhibitor, and a nitric oxide scavenger. Cancer Res 1998; 58: 159–165
  • Wu J, Nantz MH, Zern MA. Targeting hepatocytes for drug and gene delivery: Emerging novel approaches and applications. Front Biosci 2002; 7: d717–d725
  • Xiong XB, Aliabadi HM, Lavasanifar A. PEO-modified poly(l-amino acid) micelles for drug delivery. Nanotechnology for Cancer therapy. Taylor and Francis Group, New York 2007, Mansoor M Amiji
  • Xiong XB, Mahmud A, Uludag H, Lavasanifar A. Conjugation of arginine-glycine-aspartic acid peptides to poly(ethylene oxide)-b-poly(epsilon-caprolactone) micelles for enhanced intracellular drug delivery to metastatic tumor cells. Biomacromolecules 2007; 8(3)874–884
  • Yasugi K, Nakamura T, Nagasaki Y, Kato M, Kataoka K. Sugar-installed polymer micelles: Synthesis and micellization of poly(ethylene glycol)–poly(d,l-lactide) block copolymers having sugar groups at the PEG chain end. Macromolecules 1999; 32: 8024–8032
  • Yatvin MB, Weinstein JN, Dennis WH, Blumenthal R. Design of liposomes for enhanced local release of drugs by hyperthermia. Science 1978; 202: 1290–1293
  • Yatvin MB, Cree TC, Tegmo-Larsson IM, Gipp JJ. Liposomes as drug carriers in cancer therapy: Hyperthermia and pH sensitivity as modalities for targeting. Strahlentherapie 1984; 160: 732–740
  • Yokoyama M, Okano T, Sakurai Y, Ekimoto H, Shibazaki C, Kataoka K. Toxicity and antitumor activity against solid tumors of micelle-forming polymeric anticancer drug and its extremely long circulation in blood. Cancer Res 1991; 51: 3229–3236
  • Yoo HS, Park TG. Folate receptor targeted biodegradable polymeric doxorubicin micelles. J Control Release 2004; 96: 273–283
  • Yoo HS, Lee EA, Park TG. Doxorubicin-conjugated biodegradable polymeric micelles having acid-cleavable linkages. J Control Release 2002; 82: 17–27
  • Yoshida R, Sakai K, Okano T, Sakurai Y. Modulating the phase transition temperature and thermosensitivity in N-isopropylacrylamide copolymer gels. J Biomater Sci Polym Ed 1994; 6: 585–598
  • Yuan X, Harada A, Yamasaki Y, Kataoka K. Stabilization of lysozyme-incorporated polyion complex micelles by the omega-end derivatization of poly(ethylene glycol)–poly(alpha,beta-aspartic acid) block copolymers with hydrophobic groups. Langmuir 2005; 21: 2668–2674
  • van der Zee J. Heating the patient: A promising approach?. Ann Oncol 2002; 13: 1173–1184

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.