232
Views
28
CrossRef citations to date
0
Altmetric
Research Article

Stealth nanoparticles coated with heparin as peptide or protein carriers

, , , , , , , & show all
Pages 575-585 | Received 07 Jan 2009, Accepted 08 Apr 2009, Published online: 21 Aug 2009

References

  • Ardy M. (1976). Dosage de l’héparine: étude cinétique. Bull Ordre, 137, 699–707.
  • Awasthi VD, Garcia D, Goins BA, Phillips WT. (2003). Circulation and biodistribution profiles of long-circulating PEG-liposomes of various sizes in rabbits. Int J Pharm, 253, 121–132.
  • Bazile D, Prud’homme C, Bassoullet MT, Marlard M, Spenlehauer G, Veillard M. (1995). Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J Pharm Sci, 84, 493–498.
  • Béduneau A, Saulnier P, Anton N, Hindré F, Passirani C, Rajerison H, Noiret N, Benoit J-P. (2006). Pegylated nanocapsules produced by an organic solvent-free method: evaluation of their stealth properties. Pharm Res, 23, 2190–2199.
  • Bocca C, Caputo O, Cavalli R, Gabriel L, Miglietta A, Gasco MR. (1998). Phagocytic uptake of fluorescent stealth and non-stealth solid lipid nanoparticles. Int J Pharm, 175, 185–193.
  • Charrois GJ, Allen TM. (2003). Multiple injections of pegylated liposomal Doxorubicin: pharmacokinetics and therapeutic activity. J Pharmacol Exp Ther, 306, 1058–1067.
  • Chernysheva YV, Babak VG, Kildeeva NR, Boury F, Benoit JP, Ubrich N, Maincent P. (2003). Effect of the type of hydrophobic polymers on the size of nanoparticles obtained by emulsification-solvent evaporation. Mendeleev Commun, 13, 65–67.
  • Damgé C, Maincent P, Ubrich N. (2007). Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats. J Control Release, 117, 163–170.
  • Damgé C, Michel C, Aprahamian M, Couvreur P. (1988). New approach for oral administration of insulin with polyalkylcyanoacrylate nanocapsules as drug carrier. Diabetes, 37, 246–251.
  • Ekre HP, Naparstek Y, Lider O, Hyden P, Hagermark O, Nilsson T, Vlodavsky I, Cohen I. (1992). Anti-inflammatory effects of heparin and its derivatives: inhibition of complement and of lymphocyte migration. Adv Exp Med Biol, 313, 329–340.
  • Fang C, Shi B, Pei YY. (2005). Effect of MePEG molecular weight and particle size on in vitro release of tumor necrosis factor-alpha-loaded nanoparticles. Acta Pharmacol Sin, 26, 242–249.
  • Fang C, Shi B, Pei YY, Hong MH, Wu J, Chen HZ. (2006). In vivo tumor targeting of tumor necrosis factor-alpha-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size. Eur J Pharm Sci, 27, 27–36.
  • Fontana G, Licciardi M, Mansueto S, Schillaci D, Giammona G. (2001). Amoxicillin-loaded polyethylcyanoacrylate nanoparticles: influence of PEG coating on the particle size, drug release rate and phagocytic uptake. Biomaterials, 22, 2857–2865.
  • Fundaro A, Cavalli R, Bargoni A, Vighetto D, Zara GP, Gasco MR. (2000). Non-stealth and stealth solid lipid nanoparticles (SLN) carrying doxorubicin: pharmacokinetics and tissue distribution after i.v. administration to rats. Pharmacol Res, 42, 337–343.
  • Furtado S, Abramson D, Simhkay L, Wobbekind D, Mathiowitz E. (2006). Subcutaneous delivery of insulin loaded poly(fumaric-co-sebacic anhydride) microspheres to type 1 diabetic rats. Eur J Pharm Biopharm, 63, 229–236.
  • Gan Q, Wang T. (2007). Chitosan nanoparticle as protein delivery carrier—systematic examination of fabrication conditions for efficient loading and release. Colloids Surf B Biointerfaces, 59, 24–34.
  • Gaur U, Sahoo SK, De TK, Ghosh PC, Maitra A, Ghosh PK. (2000). Biodistribution of fluoresceinated dextran using novel nanoparticles evading reticuloendothelial system. Int J Pharm, 202, 1–10.
  • Gbadamosi JK, Hunter AC, Moghimi SM. (2002). PEGylation of microspheres generates a heterogeneous population of particles with differential surface characteristics and biological performance. FEBS Lett, 532, 338–344.
  • Gref R, Luck M, Quellec P, Marchand M, Dellacherie E, Harnisch S, Blunk T, Muller RH. (2000). “Stealth” corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B Biointerfaces, 18, 301–313.
  • Gregoriadis G, Leathwood PD, Ryman BE. (1971). Enzyme entrapment in liposomes. FEBS Lett, 14, 95–99.
  • Hockertz S, Franke G, Kniep E, Lohmann-Matthes ML. (1989). Mouse interferon-gamma in liposomes: pharmacokinetics, organ-distribution, and activation of spleen and liver macrophages in vivo. J Interferon Res, 9, 591–602.
  • Hoffart V, Ubrich N, Lamprecht A, Bachelier K, Vigneron C, Lecompte T, Hoffman M, Maincent P. (2003). Microencapsulation of low molecular weight heparin into polymeric particles designed with biodegradable and nonbiodegradable polycationic polymers. Drug Deliv, 10, 1–7.
  • Hsu MJ, Juliano RL. (1982). Interactions of liposomes with the reticuloendothelial system. II: Nonspecific and receptor-mediated uptake of liposomes by mouse peritoneal macrophages. Biochim Biophys Acta, 720, 411–419.
  • Huang M, Wu W, Qian J, Wan DJ, Wei XL, Zhu JH. (2005). Body distribution and in situ evading of phagocytic uptake by macrophages of long-circulating poly (ethylene glycol) cyanoacrylate-co-n-hexadecyl cyanoacrylate nanoparticles. Acta Pharmacol Sin, 26, 1512–1518.
  • Jameela SR, Suma N, Jayakrishnan A. (1997). Protein release from poly(epsilon-caprolactone) microspheres prepared by melt encapsulation and solvent evaporation techniques: a comparative study. J Biomater Sci Polym Ed, 8, 457–466.
  • Jaulin N, Appel M, Passirani C, Barratt G, Labarre D. (2000). Reduction of the uptake by a macrophagic cell line of nanoparticles bearing heparin or dextran covalently bound to poly(methyl methacrylate). J Drug Target, 8, 165–172.
  • Jiao YY, Ubrich N, Hoffart V, Marchand-Arvier M, Vigneron C, Hoffman M, Maincent P. (2002). Preparation and characterization of heparin-loaded polymeric microparticles. Drug Dev Ind Pharm, 28, 1033–1041.
  • Kazatchkine MD, Fearon DT, Silbert JE, Austen KF. (1979). Surface-associated heparin inhibits zymosan-induced activation of the human alternative complement pathway by augmenting the regulatory action of the control proteins on particle-bound C3b. J Exp Med, 150, 1202–1215.
  • Kazatchkine MD, Hauptmann G, Nydegger UE. (1986). Techniques du complément. Paris: Inserm.
  • Kedar E, Gur H, Babai I, Samira S, Even-Chen S, Barenholz Y. (2000). Delivery of cytokines by liposomes: hematopoietic and immunomodulatory activity of interleukin-2 encapsulated in conventional liposomes and in long-circulating liposomes. J Immunother, 23, 131–145.
  • Labarre D, Vauthier C, Chauvierre C, Petri B, Muller R, Chehimi MM. (2005). Interactions of blood proteins with poly(isobutylcyanoacrylate) nanoparticles decorated with a polysaccharidic brush. Biomaterials, 26, 5075–5084.
  • Labarre DJ. (1990). Heparin-like polymer surfaces: control of coagulation and complement activation by insoluble functionalized polymers. Int J Artif Organs, 13, 651–657.
  • Lappegard KT, Fung M, Bergseth G, Riesenfeld J, Lambris JD, Videm V, Mollnes TE. (2004). Effect of complement inhibition and heparin coating on artificial surface-induced leukocyte and platelet activation. Ann Thorac Surg, 77, 932–941.
  • Lemarchand C, Gref R, Passirani C, Garcion E, Petri B, Muller R, Costantini D, Couvreur P. (2006). Influence of polysaccharide coating on the interactions of nanoparticles with biological systems. Biomaterials, 27, 108–118.
  • Levchenko TS, Rammohan R, Lukyanov AN, Whiteman KR, Torchilin VP. (2002). Liposome clearance in mice: the effect of a separate and combined presence of surface charge and polymer coating. Int J Pharm. 240, 95–102.
  • Li Y, Pei Y, Zhang X, Gu Z, Zhou Z, Yuan W, Zhou J, Zhu J, Gao X. (2001). PEGylated PLGA nanoparticles as protein carriers: synthesis, preparation and biodistribution in rats. J Control Release, 71, 203–211.
  • Liu W, Yang A, Li Z, Xu H, Yang X. (2007). PEGylated PLGA nanoparticles as tumor necrosis factor-α receptor blocking peptide carriers: Preparation, characterization and release in vitro. J Wuhan Univ Technol—Mater Sci Ed, 22, 112–116.
  • Maillet F, Kazatchkine MD, Glotz D, Fischer E, Rowe M. (1983). Heparin prevents formation of the human C3 amplification convertase by inhibiting the binding site for B on C3b. Mol Immunol, 20, 1401–1404.
  • Marchal-Heussler L, Thouvenot P, Hoffman M, Maincent P. (1999). Comparison of the biodistribution in mice of 111 indium oxine encapsulated into poly(lactic-co-glycolic)-D,L-85/15 and poly(epsilon caprolactone) nanocapsules. J Pharm Sci, 88, 450–453.
  • Mayer MM. (1961). Experimental Immunochemistry. Springfield, IL: Thomas.
  • Moghimi SM, Hunter AC, Murray JC. (2001). Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev, 53, 283–318.
  • Moghimi SM, Pavey KD, Hunter AC. (2003). Real-time evidence of surface modification at polystyrene lattices by poloxamine 908 in the presence of serum: in vivo conversion of macrophage-prone nanoparticles to stealth entities by poloxamine 908. FEBS Lett, 547, 177–182.
  • Moslemi P, Najafabadi AR, Tajerzadeh H. (2003). A rapid and sensitive method for simultaneous determination of insulin and A21-desamido insulin by high-performance liquid chromatography. J Pharm Biomed Anal, 33, 45–51.
  • Muller RH, Maassen S, Schwarz C, Mehnert W. (1997). Solid lipid nanoparticles (SLN) as potential carrier for human use: interaction with human granulocytes. J Control Release, 47, 261–269.
  • Okuda T, Kawakami S, Maeie T, Niidome T, Yamashita F, Hashida M. (2006). Biodistribution characteristics of amino acid dendrimers and their PEGylated derivatives after intravenous administration. J Control Release, 114, 69–77.
  • Oppenheim RC. (1981). Solid colloidal drug delivery systems: Nanoparticles. Int J Pharm, 8, 217–234.
  • Passirani C, Barratt G, Devissaguet JP, Labarre D. (1998). Interactions of nanoparticles bearing heparin or dextran covalently bound to poly(methyl methacrylate) with the complement system. Life Sci, 62, 775–785.
  • Passirani C, Barratt G, Devissaguet JP, Labarre D. (1998). Long-circulating nanoparticles bearing heparin or dextran covalently bound to poly(methyl methacrylate). Pharm Res, 15, 1046–1050.
  • Quellec P, Gref R, Dellacherie E, Sommer F, Tran MD, Alonso MJ. (1999). Protein encapsulation within poly(ethylene glycol)-coated nanospheres. II. Controlled release properties. J Biomed Mater Res, 47, 388–395.
  • Quellec P, Gref R, Perrin L, Dellacherie E, Sommer F, Verbavatz JM, Alonso MJ. (1998). Protein encapsulation within polyethylene glycol-coated nanospheres. I. Physicochemical characterization. J Biomed Mater Res, 42, 45–54.
  • Reddy LH, Sharma RK, Chuttani K, Mishra AK, Murthy RR. (2004). Etoposide-incorporated tripalmitin nanoparticles with different surface charge: formulation, characterization, radiolabeling, and biodistribution studies. Aaps J, 6, e23.
  • Roser M, Fischer D, Kissel T. (1998). Surface-modified biodegradable albumin nano- and microspheres. II: effect of surface charges on in vitro phagocytosis and biodistribution in rats. Eur J Pharm Biopharm, 46, 255–263.
  • Sengupta S, Tyagi P, Velpandian T, Gupta YK, Gupta SK. (2000). Etoposide encapsulated in positively charged liposomes: pharmacokinetic studies in mice and formulation stability studies. Pharmacol Res, 42, 459–464.
  • Socha M, Lamprecht A, El Ghazouani F, Emond E, Maincent P, Barré J, Hoffman M, Ubrich N. (2008). Increase in the vascular residence time of propranolol-loaded nanoparticles coated with heparin. J Nanosci Nanotechnol, 8, 2369–2376.
  • Tobio M, Gref R, Sanchez A, Langer R, Alonso MJ. (1998). Stealth PLA-PEG nanoparticles as protein carriers for nasal administration. Pharm Res, 15, 270–275.
  • Verrecchia T, Spenlehauer G, Bazile DV, Murry-Brelier A, Archimbaud Y, Veillard M. (1995). Non-stealth (poly(lactic acid/albumin)) and stealth (poly(lactic acid-polyethylene glycol)) nanoparticles as injectable drug carriers. J Control Release, 36, 49–61.
  • Vittaz M, Bazile D, Spenlehauer G, Verrecchia T, Veillard M, Puisieux F, Labarre D. (1996). Effect of PEO surface density on long-circulating PLA-PEO nanoparticles which are very low complement activators. Biomaterials, 17, 1575–1581.
  • Vonarbourg A, Passirani C, Saulnier P, Simard P, Leroux JC, Benoit JP. (2006). Evaluation of pegylated lipid nanocapsules versus complement system activation and macrophage uptake. J Biomed Mater Res A, 78, 620–628.
  • Xu X, Fu Y, Hu H, Duan Y, Zhang Z. (2006). Quantitative determination of insulin entrapment efficiency in triblock copolymeric nanoparticles by high-performance liquid chromatography. J Pharm Biomed Anal, 41, 266–273.
  • Yang A, Yang L, Liu W, Li Z, Xu H, Yang X. (2007). Tumor necrosis factor alpha blocking peptide loaded PEG-PLGA nanoparticles: preparation and in vitro evaluation. Int J Pharm, 331, 123–132.
  • Zambaux MF, Bonneaux F, Gref R, Dellacherie E, Vigneron C. (1999). Preparation and characterization of protein C-loaded PLA nanoparticles. J Control Release, 60, 179–188.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.