1,323
Views
50
CrossRef citations to date
0
Altmetric
Review Articles

Microfluidics: a transformational tool for nanomedicine development and production

, , &
Pages 821-835 | Received 11 Mar 2016, Accepted 02 Jun 2016, Published online: 05 Aug 2016

References

  • Perrie Y , Crofts F , Devitt A , et al . Designing liposomal adjuvants for the next generation of vaccines. Adv Drug Deliv Rev 2015;99:85–96.
  • Singh R , Nalwa HS. Medical applications of nanoparticles in biological imaging, cell labeling, antimicrobial agents, and anticancer nanodrugs. J Biomed Nanotechnol 2011;7:489–503.
  • Singh M , Chakrapani A , O’Hagan D. Nanoparticles and microparticles as vaccine-delivery systems. Exp Rev Vaccines 2007;6:797–808.
  • Wan C , Allen TM , Cullis PR. Lipid nanoparticle delivery systems for siRNA-based therapeutics. Drug Deliv Transl Res 2014;4:74–83.
  • Tian H , Chen J , Chen X. Nanoparticles for gene delivery. Small 2013;9:2034–44.
  • Tam YY , Chen S , Cullis PR. Advances in lipid nanoparticles for siRNA delivery. Pharmaceutics 2013;5:498–507.
  • Quintanar-Guerrero D , Allemann E , Fessi H , Doelker E. Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers. Drug Dev Ind Pharm 1998;24:1113–28.
  • Bilati U , Allémann E , Doelker E. Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. Eur J Pharm Sci 2005;24:67–75.
  • Phapal SM , Sunthar P. Influence of micro-mixing on the size of liposomes self-assembled from miscible liquid phases. Chem Phys Lipids 2013;172:20–30.
  • Jahn A , Vreeland WN , Gaitan M , Locascio LE. Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing. J Am Chem Soc 2004;126:2674–5.
  • Karnik R , Gu F , Basto P , et al . Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett 2008;8:2906–12.
  • Bangham AD , Horne RW. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J Mol Biol 1964;8:660–8.
  • Bangham AD , Standish MM , Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 1965;13:238–52.
  • Balazs DA , Godbey W. Liposomes for use in gene delivery. J Drug Deliv 2011;2011:326497.
  • Lasic DD. Liposomes in gene delivery. Boca Raton (FL): CRC Press; 1997.
  • Allen TM , Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 2013;65:36–48.
  • Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005;4:145–60.
  • Muller RH , Mader K , Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery: a review of the state of the art. Eur J Pharm Biopharm 2000;50:161–77.
  • Leung AK , Hafez IM , Baoukina S , et al . Lipid nanoparticles containing sirna synthesized by microfluidic mixing exhibit an electron-dense nanostructured core. J Phys Chem C Nanomater Interfaces 2012;116:18440–50.
  • Li CX , Parker A , Menocal E , et al . Delivery of RNA interference. Cell Cycle 2006;5:2103–9.
  • Kay MA , Glorioso JC , Naldini L. Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med 2001;7:33–40.
  • Whitehead KA , Langer R , Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 2009;8:129–38.
  • Lin PJ , Tam YK , Cullis PR. Development and clinical applications of siRNA-encapsulated lipid nanoparticles in cancer. Clin Lipidol 2014;9:317–31.
  • Wasan KM , Brocks DR , Lee SD , et al . Impact of lipoproteins on the biological activity and disposition of hydrophobic drugs: implications for drug discovery. Nat Rev Drug Discov 2008;7:84–99.
  • Endres T , Zheng M , Beck-Broichsitter M , et al . Optimising the self-assembly of siRNA loaded PEG-PCL-lPEI nano-carriers employing different preparation techniques. J Control Release 2012;160:583–91.
  • Akbarzadeh A , Rezaei-Sadabady R , Davaran S , et al . Liposome: classification, preparation, and applications. Nanoscale Res Lett 2013;8:102.
  • Mozafari MR. Liposomes: an overview of manufacturing techniques. Cell Mol Biol Lett 2005;10:711–19.
  • Jeffs LB , Palmer LR , Ambegia EG , et al . A scalable, extrusion-free method for efficient liposomal encapsulation of plasmid DNA. Pharm Res 2005;22:362–72.
  • Leung AK , Tam YYC , Cullis PR. Lipid nanoparticles for short interfering rna delivery. Non-viral vectors for gene therapy: lipid-and polymer-based . Adv Genet 2014;88:71.
  • Rungta RL , Choi HB , Lin PJ , et al . Lipid nanoparticle delivery of siRNA to silence neuronal gene expression in the brain. Mol Ther Nucleic Acids 2013;2:e136.
  • Leung AK , Tam YY , Chen S , et al . Microfluidic mixing: a general method for encapsulating macromolecules in lipid nanoparticle systems. J Phys Chem B 2015;119:8698–706.
  • Heyes J , Palmer L , Bremner K , MacLachlan I. Cationic lipid saturation influences intracellular delivery of encapsulated nucleic acids. J Control Release 2005;107:276–87.
  • Semple SC , Akinc A , Chen J , et al . Rational design of cationic lipids for siRNA delivery. Nat Biotechnol 2010;28:172–6.
  • Maier MA , Jayaraman M , Matsuda S , et al . Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics. Mol Ther 2013;21:1570–8.
  • Belliveau NM , Huft J , Lin PJ , et al . Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. Mol Ther Nucleic Acids 2012;1:e37.
  • Judge AD , Bola G , Lee AC , MacLachlan I. Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol Ther 2006;13:494–505.
  • Ramishetti S , Kedmi R , Goldsmith M , et al . Systemic gene silencing in primary T lymphocytes using targeted lipid nanoparticles. ACS Nano 2015;9:6706–16.
  • Zimmermann TS , Lee AC , Akinc A , et al . RNAi-mediated gene silencing in non-human primates. Nature 2006;441:111–14.
  • Crawford R , Dogdas B , Keough E , et al . Analysis of lipid nanoparticles by Cryo-EM for characterizing siRNA delivery vehicles. Int J Pharm 2011;403:237–44.
  • Chen D , Love KT , Chen Y , et al . Rapid discovery of potent siRNA-containing lipid nanoparticles enabled by controlled microfluidic formulation. J Am Chem Soc 2012;134:6948–51.
  • Maeki M , Saito T , Sato Y , et al . A strategy for synthesis of lipid nanoparticles using microfluidic devices with a mixer structure. RSC Adv 2015;5:46181–5.
  • Zhigaltsev IV , Tam YK , Leung AK , Cullis PR. Production of limit size nanoliposomal systems with potential utility as ultra-small drug delivery agents. J Liposome Res 2015;26:96–102.
  • Allen TM , Hansen CB , Guo LS. Subcutaneous administration of liposomes: a comparison with the intravenous and intraperitoneal routes of injection. Biochim Biophys Acta 1993;1150:9–16.
  • Chen S , Tam YY , Lin PJ , et al . Development of lipid nanoparticle formulations of siRNA for hepatocyte gene silencing following subcutaneous administration. J Control Release 2014;196:106–12.
  • Yamamoto Y , Lin PJ , Beraldi E , et al . siRNA lipid nanoparticle potently silences clusterin and delays progression when combined with androgen receptor cotargeting in enzalutamide-resistant prostate cancer. Clin Cancer Res 2015;21:4845–55.
  • Thorek DL , Tsourkas A. Size, charge and concentration dependent uptake of iron oxide particles by non-phagocytic cells. Biomaterials 2008;29:3583–90.
  • Karra D , Dahm R. Transfection techniques for neuronal cells. J Neurosci 2010;30:6171–7.
  • Zhigaltsev IV , Belliveau N , Hafez I , et al . Bottom-up design and synthesis of limit size lipid nanoparticle systems with aqueous and triglyceride cores using millisecond microfluidic mixing. Langmuir 2012;28:3633–40.
  • Pradhan P , Guan J , Lu D , et al . A facile microfluidic method for production of liposomes. Anticancer Res 2008;28:943–7.
  • Jahn A , Vreeland WN , DeVoe DL , et al . Microfluidic directed formation of liposomes of controlled size. Langmuir 2007;23:6289–93.
  • Laouini A , Charcosset C , Fessi H , et al . Preparation of liposomes: a novel application of microengineered membranes-from laboratory scale to large scale. Colloids Surf B Biointerfaces 2013;112:272–8.
  • van Swaay D , deMello A. Microfluidic methods for forming liposomes. Lab Chip 2013;13:752–67.
  • Yu B , Lee RJ , Lee LJ. Microfluidic methods for production of liposomes. Meth Enzymol 2009;465:129–41.
  • Jahn A , Reiner JE , Vreeland WN , et al . Preparation of nanoparticles by continuous-flow microfluidics. J Nanoparticle Res 2008;10:925–34.
  • Batzri S , Korn ED. Single bilayer liposomes prepared without sonication. Biochim Biophys Acta 1973;298:1015–19.
  • Kastner E , Kaur R , Lowry D , et al . High-throughput manufacturing of size-tuned liposomes by a new microfluidics method using enhanced statistical tools for characterization. Int J Pharm 2014;477:361–8.
  • Huang X , Caddell R , Yu B , et al . Ultrasound-enhanced microfluidic synthesis of liposomes. Anticancer Res 2010;30:463–6.
  • Cullis P. Application of Microfluidic Mixing for Generating Limit Size Nanoparticles. [Webinar] 2016. Available from: https://www.precisionnanosystems.com/resource/application-of-microfluidic-mixing-for-generating-limit-size-nanoparticles/?sf_action=get_results&_sft_resource-type=videos-and-webinars.
  • Yu B , Zhu J , Xue W , et al . Microfluidic assembly of lipid-based oligonucleotide nanoparticles. Anticancer Res 2011;31:771–6.
  • Hood RR , Shao C , Omiatek DM , et al . Microfluidic synthesis of PEG- and folate-conjugated liposomes for one-step formation of targeted stealth nanocarriers. Pharm Res 2013;30:1597–607.
  • Hood RR , Kendall EL , Junqueira M , et al . Microfluidic-enabled liposomes elucidate size-dependent transdermal transport. PLoS One 2014;9:e92978.
  • Kamaly N , Xiao Z , Valencia PM , et al . Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev 2012;41:2971–3010.
  • Rhee M , Valencia PM , Rodriguez MI , et al . Synthesis of size-tunable polymeric nanoparticles enabled by 3D hydrodynamic flow focusing in single-layer microchannels. Adv Mater 2011;23:H79–83.
  • Kang X , Luo C , Wei Q , et al . Mass production of highly monodisperse polymeric nanoparticles by parallel flow focusing system. Microfluidics Nanofluidics 2013;15:337–45.
  • Lim J-M , Bertrand N , Valencia PM , et al . Parallel microfluidic synthesis of size-tunable polymeric nanoparticles using 3D flow focusing towards in vivo study. Nanomed: Nanotech Biol Med 2014;10:401–9.
  • Roy A , Ernsting MJ , Undzys E , Li SD. A highly tumor-targeted nanoparticle of podophyllotoxin penetrated tumor core and regressed multidrug resistant tumors. Biomaterials 2015;52:335–46.
  • Hoang B , Ernsting MJ , Murakami M , et al . Docetaxel-carboxymethylcellulose nanoparticles display enhanced anti-tumor activity in murine models of castration-resistant prostate cancer. Int J Pharm 2014;471:224–33.
  • Majedi FS , Hasani-Sadrabadi MM , Emami SH , et al . Microfluidic assisted self-assembly of chitosan based nanoparticles as drug delivery agents. Lab Chip 2013;13:204–7.
  • Zhang L , Feng Q , Wang J , et al . Microfluidic synthesis of hybrid nanoparticles with controlled lipid layers: understanding flexibility-regulated cell-nanoparticle interaction. ACS Nano 2015;9:9912–21.
  • Zhang L , Feng Q , Wang J , et al . Microfluidic synthesis of rigid nanovesicles for hydrophilic reagents delivery. Angew Chem Int Ed Engl 2015;54:3952–6.
  • Mieszawska AJ , Kim Y , Gianella A , et al . Synthesis of polymer-lipid nanoparticles for image-guided delivery of dual modality therapy. Bioconjug Chem 2013;24:1429–34.
  • Valencia PM , Basto PA , Zhang L , et al . Single-step assembly of homogenous lipid-polymeric and lipid-quantum dot nanoparticles enabled by microfluidic rapid mixing. ACS Nano 2010;4:1671–9.
  • Kastner E , Verma V , Lowry D , Perrie Y. Microfluidic-controlled manufacture of liposomes for the solubilisation of a poorly water soluble drug. Int J Pharm 2015;485:122–30.
  • Bicudo RCS , Santana MHA. Production of hyaluronic acid (HA) nanoparticles by a continuous process inside microchannels: effects of non-solvents, organic phase flow rate, and HA concentration. Chem Eng Sci 2012;84:134–41.
  • Ali HS , York P , Ali AM , Blagden N. Hydrocortisone nanosuspensions for ophthalmic delivery: a comparative study between microfluidic nanoprecipitation and wet milling. J Control Release 2011;149:175–81.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.