601
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Bottom up design of nanoparticles for anti-cancer diapeutics: “put the drug in the cancer’s food”

, , , , , , , , , & show all
Pages 836-856 | Received 12 Sep 2016, Accepted 14 Sep 2016, Published online: 16 Oct 2016

References

  • Zhigaltsev IV , Belliveau N , Hafez I , et al . Bottom-up design and synthesis of limit size lipid nanoparticle systems with aqueous and triglyceride cores using millisecond microfluidic mixing. Langmuir 2012;28:3633–40.
  • Needham D. Controlled drug release via thermo-labile nanoparticles for cancer treatment. Basel, Switzerland: European Foundation for Clinical Nanomedicine (CLINAM) and the European Technology Platform on Nanomedicine (ETPN) Clinical Nanomedicine and Targeted Medicine; 2013.
  • Janoff AS. Liposomes: rational design. New York: Marcel Dekker; 1998.
  • Voinea M , Simionescu M . Designing of ‘intelligent’ liposomes for efficient delivery of drugs. J Cell Mol Med 2002;6:465–74.
  • Noble GT , Stefanick JF , Ashley JD , et al . Ligand-targeted liposome design: challenges and fundamental considerations. Trends Biotechnol 2014;32:32–45.
  • Needham DK , Trigwell FV , Christensen C , et al . Reverse engineering to enhance student learning in pharmacy 2016. in preparation.
  • Needham D. Reverse engineering the low temperature sensitive liposome (LTSL). In: Park K , ed. Biomaterials for cancer therapeutics. diagnosis, prevention and therapy, edited by Kinam Park, Woodhead Publishing Series in Biomaterials No. 66. Cambridge, UK: Woodhead Publishing; 2013.
  • Needham D , Anyarambhatla G , Kong G , Dewhirst MW. A new temperature-sensitive liposome for use with mild hyperthermia: characterization and testing in a human tumor xenograft model. Cancer Res 2000;60:1197–201.
  • Teerlink T , Scheffer PG , Bakker SJ , Heine RJ. Combined data from LDL composition and size measurement are compatible with a discoid particle shape. J Lipid Res 2004;45:954–66.
  • Firestone RA. Low-density lipoprotein as a vehicle for targeting antitumor compounds to cancer cells . Bioconjug Chem 1994;5:105–13.
  • Yue S , Li J , Lee SY , et al . Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. Cell Metab 2014;19:393–406.
  • Rodrigues Dos Santos C , Domingues G , Matias I , et al . LDL-cholesterol signaling induces breast cancer proliferation and invasion. Lipids Health Disease 2014;13:16.
  • Isselbacher JK , Budz DM . Synthesis of lipoproteins by rat intestinal mucosa. Nature 1963;200:364–5.
  • Tytgat GN , Rubin CE , Saunders DR . Synthesis and transport of lipoprotein particles by intestinal absorptive cells in man. J Clin Investigation 1971;50:2065–78.
  • Fisher WR , Hammond MG , Mengel MC , Warmke GL. A genetic determinant of the phenotypic variance of the molecular weight of low density lipoprotein. Proc Natl Acad Sci USA 1975;72:2347–51.
  • Deckelbaum RJ , Tall AR , Small DM. Interaction of cholesterol ester and triglyceride in human plasma very low density lipoprotein1. J Lipid Res 1977;18:164–8.
  • Kesaniemi YA , Witztum JL , Steinbrecher UP. Receptor-mediated catabolism of low density lipoprotein in man quantitation using glucosylated low density lipoprotein. J Clin Invest 1983;71:950–9.
  • Forte TM . Primary hepatocytes in monolayer culture: a model for studies on lipoprotein metabolism . Annu Rev Physiol 1984;46:403–15.
  • Havel RJ. The formation of LDL: mechanisms and regulation. J Lipid Res 1984;25:1570–5.
  • Bouma ME , Pessah M , Renaud G , et al . Synthesis and secretion of lipoproteins by human hepatocytes in culture. In vitro Cell Dev Biol. 1988;24:85–90.
  • De Smidt PC , Van Berkel TJ. Prolonged serum half-life of antineoplastic drugs by incorporation into the low density lipoprotein. Cancer Res 1990;50:7476–82.
  • Miyazaki M , Kim YC , Gray-Keller MP , et al . The biosynthesis of hepatic cholesterol esters and triglycerides is impaired in mice with a disruption of the gene for Stearoyl-CoA Desaturase 1. J Biol Chem 2000;275:30132–8.
  • Kondo A , Muranaka Y , Ohta I , et al . Relationship between triglyceride concentrations and LDL size evaluated by malondialdehydemodified LDL. Clin Chem 2001;47:893–900.
  • Segrest JP , Jones MK , De Loof H , Dashti N. Structure of apolipoprotein B-100 in low density lipoproteins. J Lipid Res 2001;42:1346–67.
  • Swift LL , Zhu MY , Kakkad B , et al . Subcellular localization of microsomal triglyceride transfer protein. J Lipid Res 2003;44:1841–9.
  • Zhang J , Herscovitz H. Nascent lipidated apolipoprotein b is transported to the golgi as an incompletely folded intermediate as probed by its association with network of endoplasmic reticulum molecular chaperones, GRP94, ERp72, BiP, Calreticulin, and Cyclophilin B. J Biol Chem 2003;278:7459–68.
  • Smith PM , Cowan A , White BA. The low-density lipoprotein receptor is regulated by estrogen and forms a functional complex with the estrogen-regulated protein ezrin in pituitary GH3 somatolactotropes. Endocrinology 2004;145:3075–83.
  • Ellsworth JL , Erickson SK , Cooper AD. Very low and low density lipoprotein synthesis and secretion by the human hepatoma cell line Hep-G2: effects of free fatty acid. J Lipid Res 1986;27:858–74.
  • Kleppe BB , Aiello RJ , Grummer RR , Armentano LE. Triglyceride accumulation and very low density lipoprotein secretion by rat and goat hepatocytes in vitro . J Dairy Sci 1988;71:1813–22.
  • Witztum JL. Role of oxidized low density lipoprotein in atherogenesis. Br Heart J 1993;69:S12–18.
  • Masquelier M , Vitols S , Peterson C . Low-density lipoprotein as a carrier of antitumoral drugs: in vivo fate of drug-human low-density lipoprotein complexes in mice. Cancer Res 1986;46:3842–7.
  • Filipowskal D , Filipowskil T , Morelowska B , et al . Treatment of cancer patients with a low-density lipoprotein delivery vehicle containing a cytotoxic drug. Cancer Chemother Pharmacol 1992;29:396–400.
  • Corbin IR , Li H , Chen J , et al . Low-density lipoprotein nanoparticles as magnetic resonance imaging contrast agents. Neoplasia 2006;8:488–98.
  • Lundberg B , Suominen L. Preparation of biologically active analogs of serum low density lipoprotein. J Lipid Res 1984;25:550–8.
  • Baillie G , Owens MD , Halbert GW. A synthetic low density lipoprotein particle capable of supporting U937 proliferation in vitro . J Lipid Res 2002;43:69–73.
  • Hayavi S , Halbert GW. Synthetic low-density lipoprotein, a novel biomimetic lipid supplement for serum-free tissue culture. Biotechnol Prog 2005;21:1262–8.
  • Zheng G , Chen J , Li H , Glickson JD. Rerouting lipoprotein nanoparticles to selected alternate receptors for the targeted delivery of cancer diagnostic and therapeutic agents. PNAS 2005;102:17757–62.
  • Nikanjam M , Blakely EA , Bjornstad KA , et al . Synthetic nano-low density lipoprotein as targeted drug delivery vehicle for glioblastoma multiforme. Int J Pharm 2007;328:86–94.
  • Nikanjam M , Gibbs AR , Hunt CA , et al . Synthetic nano-LDL with paclitaxel oleate as a targeted drug delivery vehicle for glioblastoma multiforme. J Control Release 2007;124:163–71.
  • Lacko AG , Mconnathy WJ . Targeted cancer chemotherapy using synthetic nanoparticles. Patent number US20090110739 A1; 2009.
  • Pires LSA , Hegg R , Valduga CJ , et al . Use of cholesterol-rich nanoparticles that bind to lipoprotein receptors as a vehicle to paclitaxel in the treatment of breast cancer: pharmacokinetics, tumor uptake and a pilot clinical study. Cancer Chemother Pharmacol 2009;63:281–7.
  • Zhang Z , Cao W , Jin H , et al . Biomimetic nanocarrier for direct cytosolic drug delivery . Angew Chem Int Ed Engl 2009;48:9171–5.
  • Häggström M. Blood values sorted by mass and molar concentration; 2009. Wikipedia article.
  • Jaffe EA. Cell biology of endothelial cells. Hum Pathol 1987;18:234–9.
  • Sumpio BE , Riley JT , Dardik A. Cells in focus: endothelial cell . Int J Biochem Cell Biol 2002;34:1508–12.
  • Adamson RH. Microvascular endothelial cell shape and size in situ . Microvasc Res 1993;46:77–88.
  • Mohandas N , Gallagher PG. Red cell membrane: past, present, and future. Blood 2008;112:3939–48.
  • Petrache HI , Dodd SW , Brown MF. Area per lipid and acyl length distributions in fluid phosphatidylcholines determined by 2H NMR spectroscopy. Biophys J 2000;79:3172–92.
  • Needham D. A white paper: the formulation of hydrophobic anti-cancer drugs; 2011.
  • Epstein PS , Plesset MS. On the stability of gas bubbles in liquid-gas solutions. J Chem Phys 1950;18:1505–409.
  • Duncan PB , Needham D. Test of the Epstein-Plesset model for gas microparticle dissolution in aqueous media: Effect of surface tension and gas undersaturation in solution. Langmuir 2004;20:2567–78.
  • Duncan PB , Needham D. Microdroplet dissolution into a second-phase solvent using a micropipet technique: test of the Epstein-Plesset model for an aniline-water system. Langmuir 2006;22:4190–7.
  • Kinoshita K , Parra E , Needham D. New sensitive micro-measurements of dynamic surface tension and diffusion coefficients: validated and tested for the adsorption of 1-Octanol at a microscopic air-water interface and its dissolution into water 2016b. submitted to Langmuir
  • Benjamin MB , Lawler DL. Water Quality Engineering: Physical/Chemical Treatment Processes. New Jersey: John Wiley & Sons; 2013.
  • Kresic N. Hydrogeology and groundwater modeling, (Table 6.3). Boca Raton, FL: CRC Press; 2006.
  • Su JT , Duncan PB , Momaya A , et al . The effects of hydrogen bonding on the diffusion of water in n-alkanes and n-alcohols measured with a novel single microdroplet method. J Chem Phys 2010;132:044506.
  • Aniket Gaul DA , Rickard DL , Needham D. Microglassification (TM): a novel technique for protein dehydration. J Pharm Sci 2014;103:810–20.
  • Rickard DL , Duncan PB , Needham D. Hydration potential of lysozyme: protein dehydration using a single microparticle technique. Biophys J 2010;98:1075–84.
  • Utoft A , Needham D. Dissolution rates, supersaturation, nucleation and solubility of NaCl in single water micro droplets into organic liquids. 29th Conference of the European Colloid and Interface Society. Bordeaux: European Colloid and Interface Society; 2015.
  • Bitterfield DL , Utoft A , Needham D . Dissolution rates of solute-containing microdroplets: an activity-based dissolution model. Langmuir 2016, submitted for publication.
  • Gilchrist SE , Rickard DL , Letchford K , et al . Phase separation behavior of fusidic acid and rifampicin in PLGA microspheres. Mol Pharm 2012;9:1489–501.
  • Yang C , Plackett D , Needham D , Burt HM. PLGA and PHBV microsphere formulations and solid-state characterization: possible implications for local delivery of fusidic acid for the treatment and prevention of orthopedic infections. Pharm Res 2009;26:1644–56.
  • Kinoshita K , Parra E , Utoft1 A , et al . New single microparticle technique for forming and characterizing polymer microsphere-drug encapsulation and dissolution: initial tests for ibuprofen-PLGA-DCM. 43rd Annual Meeting & Exposition of the Controlled Release Society Washington State Convention Center, Seattle, Washington, U.S.A; 2016.
  • Worthing CR , Walker SB. The pesticide manual-a world compendium. 8th ed. Thornton Heath, UK: The British Crop Protection Council; 1987.
  • Tomlin CDS. The pesticide manual – world compendium. 10th ed. Surrey, UK: The British Crop Protection Council; 1994.
  • Needham D , Nunn RS. Elastic deformation and failure of lipid bilayer membranes containing cholesterol. Biophys J 1990;58:997–1009.
  • Evans E , Needham D. Physical properties of surfactant bilayer-membranes – thermal transitions, elasticity, rigidity, cohesion, and colloidal interactions. J Phys Chem 1987;91:4219–28.
  • Needham D , Zhelev D . Chapter 9. Use of micropipet manipulation techniques to measure the properties of giant lipid vesicles. In: Luisi PL. and WALDE P , eds. Giant Vesicles. Chichester: John Wiley & Sons Ltd; 2000.
  • Needham D , Zhelev D . The mechanochemistry of lipid vesicles examined by micropipet manipulation techniques. In: Rosoff M , ed. Vesicles. New York: Marcell Dekker; 1996.
  • Bagatolli LA , Needham D. Quantitative optical microscopy and micromanipulation studies on the lipid bilayer membranes of giant unilamellar vesicles. Chem Phys Lipids 2014;181:99–120.
  • Parra E , Needham D. Mechanic assays based on micropipette aspiration. In: Dimova R and Marques C , eds. The Giant Vesicle Book. Boca Raton, FL: CRC Press; 2016, in press.
  • Kim DH , Needham D . Lipids as bilayers and monolayers: characterization using micropipet manipulation techniques. In: Hubbard A , ed. Encyclopedia of Surface and Colloid Science. Santa Barbara, CA; New York, NY: Marcel Dekker Inc.; 2001.
  • Evans E , Rawicz W , Smith BA. Concluding remarks back to the future: mechanics and thermodynamics of lipid biomembranes. Faraday Discuss 2013;161:591–611.
  • Kim DH , Costello MJ , Duncan PB , Needham D. Mechanical properties and microstructure of polycrystalline phospholipid monolayer shells – novel solid nanoparticles. Langmuir 2003;19:8455–66.
  • Bloom M , Evans E , Mouritsen OG. Physical properties of the fluid lipid-bilayer component of cell membranes: a perspective. Q Rev Biophys 1991;24:293–397.
  • Silverman JA , deitcher SR. Marqibo(®) (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemother Pharmacol 2013;71:555–64.
  • Mayer LD , Bally MB , Loughrey H , et al . Liposomal vincristine preparations which exhibit decreased drug toxicity and increased activity against murine L1210 and P388 tumors. Cancer Res 1990;50:575–9.
  • Noble CO , Guo Z , Hayes ME , et al . Characterization of highly stable liposomal and immunoliposomal formulations of vincristine and vinblastine. Cancer Chemother Pharmacol 2009;64:741–51.
  • Boman NL , Mayer LD , Cullis PR. Optimization of the retention properties of vincristine in liposomal systems. Biochim Biophys Acta 1993;1152:253–8.
  • DRUGBANK . 2016. Vincristine [Online]. Available: http://www.drugbank.ca/drugs/DB00541 [Accessed].
  • Horn D , Rieger J . Organic nanoparticles in the aqueous phase-theory, experiment, and use . Angew Chem Int Ed Engl 2001;40:4330–61.
  • Lince F , Marchisio Dl , Barresi AA. Strategies to control the particle size distribution of poly-ɛ-caprolactone nanoparticles for pharmaceutical applications. J Colloid Interface Sci 2008;322:505–15.
  • Thanh NTK , Maclean N , Mahiddine S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem Rev 2014;114:7610–30.
  • Kridel SJ , Axelrod F , Rozenkrantz N , Smith JW. Orlistat is a novel inhibitor of fatty acid synthase with antitumor activity. Cancer Res 2004;64:2070–5.
  • Utoft A. Surface Tension of Triolein. unpublished. Denmark: University of Southern Denmark; 2016.
  • Walke P. Physicochemical properties and applications of micro and nanoparticle drugs. PhD. Denmark: University Southern Denmark; 2016.
  • Lee S , Kim DH , Needham D. Static and dynamic surface tension measurement of microscopic interfaces using a micropipet technique: 2. dynamics of phospholipid monolayer formation and equilibrium spreading pressures at the air-water interface. Langmuir 2001;17:5544–50.
  • Lee Sadn , 2000. The gel-liquid crystalline phase transition of phospholipid monolayers on emulsion surfaces. unpublished.
  • Kinoshita K , Parra E , Needham D. Diffusion coefficient for ionic surfactants measured at air water interfaces using a new interfacial area-expansion method. Langmuir 2016, submitted for publication.
  • Parra E , Kinoshita K , Needham D. A micropipette study of natural and synthetic lung surfactants at microscopic interfaces: formation of tightly stacked lipid lamellae and development of myelin-like structures is promoted by the presence of a SP-B analog. Langmuir 2016, in review.
  • Yalkowsky SH , Valvani SC. Solubility and partitioning I: solubility of nonelectrolytes in water. J Pharm Sci 1980;69:912–22.
  • Hervella P , Parra E , Needham D. Cu core-labeled nanoparticles with controlled particle size and high copper loading using hydrophobic porphyrin as chelating agent. Eur J Pharm Biopharm 2016;102:64–76.
  • Su JT , Needham D. Mass transfer in the dissolution of a multicomponent liquid droplet in an immiscible liquid environment. Langmuir 2013;29:13339–45.
  • Kinoshita K , Parra E , Utoft A , Needham D. Saturation and supersaturation measurement of hydrophobic solute with micropipette manipulation technique. 29th Conference of the European Colloid and Interface Society, Bordeaux. Bordeaux: European Colloid and Interface Society; 2015.
  • Batzri S , Korn ED. Single bilayer liposomes prepared without sonication. Biochim Biophys Acta 1973;298:1015–9.
  • Lasic DD. Mechanisms of liposome formation. J Liposome Res 1995;5:431–41.
  • Charcosset C , Juban A , Valour JP , et al . Preparation of liposomes at large scale using the ethanol injection method: Effect of scale-up and injection devices. Chem Eng Res Des 2015;94:508–15.
  • Thorat AA , Dalvi SV. Liquid antisolvent precipitation and stabilization of nanoparticles of poorly water soluble drugs in aqueous suspensions: Recent developments and future perspective. Chem Eng J 2012;182:181–34.
  • Manzoor AA , Larsh , Lindner Ji-Young , et al . A new paradigm for drug delivery to tumors: the importance of triggered intravascular drug release from thermally-sensitive liposomes as a mechanism to enhance drug penetration distance 2011. PNAS, in review.
  • Wu Nz DD , Rudoll TL , Needham D , et al . Increased microvascular permeability contributes to preferential accumulation of Stealth liposomes in tumor tissue. Cancer Res 1993;53:3765–70.
  • Hervella P , Damm JH , Thisgaard H , et al . Encapsulation and retention of 57-Cobalt inside hydrophobic liquid nanoparticles: cobalt chelation by Octaethyl Porphyrin using hydrophobic amines as co-chelating agents. Eur J Phar Biopharm 2016, submitted for publication.
  • Karimi L. Evaluation of fatty acid metabolism as target for breast cancer therapeutics. Denmark: MS, University Southern Denmark; 2015.
  • Karimi L , Hervella P , Glud K , et al . Evaluation of fatty acid metabolism as target for breast cancer therapeutics. J Nanomed 2016, submitted for publication.
  • Hervella P , Arslanagic A , Walke P , et al . Formulation and in vitro cytotoxicity of niclosamide stearate nanoparticles. Eur J Phar Biopharm 2016, submitted for publication.
  • Kenworthy AK , Hristova K , Needham D , Mcintosh TJ. Range and magnitude of the steric pressure between bilayers containing phospholipids with covalently attached poly(ethylene glycol). Biophys J 1995;68:1921–36.
  • Arslanagic A. Evaluation of LDLR for targeted drug delivery to breast cancer cells. Denmark: MS, University Southern Denmark; 2014.
  • Swinnen JV , Van Veldhoven PP , Timmermans L , et al . Fatty acid synthase drives the synthesis of phospholipids partitioning into detergent-resistant membrane microdomains. Biochem Biophys Res Commun 2003;302:898–903.
  • Currie E , Schulze A , Zechner R , et al . Cellular fatty acid metabolism and cancer. Cell Metab 2013;18:153–61.
  • Kuhajda FP , Jenner K , Wood FD , et al . Fatty acid synthesis: a potential selective target for anti-neoplastic therapy. Proc Natl Acad Sci USA 1994;5:6379–83.
  • Hilvo M , Denkert C , Lehtinen L , et al . Novel theranostic oppurtunities offered by characterization of altered membrane lipid metabolism in breast cancer progression. Cancer Res 2011;71:3236–45.
  • Aló Plea. Expression of fatty acid aynthase (FAS) as a predictor of recurrence in stage I breast carcinoma patients. Cancer 1996;77:474–82.
  • Karimi L , Hervella P , Glud K , Needham D. Evaluation of fatty acid synthase as target for breast cancer therapeutics 2016b. to be submitted.
  • Yoshii Y , Furukawa T , Oyama N , et al . Fatty acid synthase is a key target in multiple essential tumor functions of prostate cancer: uptake of radiolabeled acetate as a predictor of the targeted therapy outcome. PLoS One 2013;18:e64570.
  • Skøtt J. Nanoparticle drug formulation: assessment of ostwald ripening and aggregation on ultimate particle size. Denmark: University of Southern Denmark; 2014.
  • Cullis P. The personalized medicine revolution: how diagnosing and treating disease are about to change forever. Vancouver BC, Canada: Greystone Books Ltd; 2015.
  • Ho CL , Chen S , Ho KM , et al . Dual-tracer PET/CT in renal angiomyolipoma and subtypes of renal cell carcinoma. Clin Nucl Med 2012;37:1075–82.
  • Kwee TC , Basu S , Saboury B , et al . A new dimension of FDG-PET interpretation: assessment of tumor biology. Eur J Nucl Med Mol Imaging 2011;38:1158–70.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.