282
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Recent trends in the transdermal delivery of therapeutic agents used for the management of neurodegenerative diseases

Pages 406-419 | Received 13 Jun 2016, Accepted 03 Oct 2016, Published online: 08 Nov 2016

References

  • Mills JD, Janitz M. Alternative splicing of mRNA in the molecular pathology of neurodegenerative diseases. Neurobiol Aging 2012;33:1012.e11–.e24.
  • Chekani F, Bali V, Aparasu RR. Quality of life of patients with Parkinson's disease and neurodegenerative dementia: a nationally representative study. Res Soc Adm Pharm 2016;12:604–13.
  • Ray R, Juranek JK, Rai V. RAGE axis in neuroinflammation, neurodegeneration and its emerging role in the pathogenesis of amyotrophic lateral sclerosis. Neurosci Biobehav Rev 2016;62:48–55.
  • Mrzljak L, Munoz-Sanjuan I. Therapeutic strategies for Huntington’s disease. Curr Top Behav Neurosci 2015;22:161–201.
  • Bett C, Kurt TD, Lucero M, et al. Defining the conformational features of anchorless, poorly neuroinvasive prions. PLoS Pathog 2013;9:e1003280.
  • Alzheimer’s Association. 2015 Alzheimer's disease facts and figures. Alzheimers Dement 2015;11:332–84.
  • Kim YH, Choi HY, Lim HS, et al. Single dose pharmacokinetics of the novel transdermal donepezil patch in healthy volunteers. Drug Des Devel Ther 2015;9:1419–26.
  • Qiu C, Kivipelto M, von Strauss E. Epidemiology of Alzheimer's disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci 2009;11:111–28.
  • de la Monte SM. Type 3 diabetes is sporadic Alzheimer’s disease: mini-review. Eur Neuropsychopharmacol 2014;24:1954–60.
  • Hamulakova S, Imrich J, Janovec L, et al. Novel tacrine/acridine anticholinesterase inhibitors with piperazine and thiourea linkers. Int J Biol Macromol 2014;70:435–9.
  • Bassil N, Grossberg GT. Novel regimens and delivery systems in the pharmacological treatment of Alzheimer's disease. CNS Drugs 2009;23:293–307.
  • Caon T, Pan Y, Simões CMO, Nicolazzo JA. Exploiting the buccal mucosa as an alternative route for the delivery of donepezil hydrochloride. J Pharm Sci 2014;103:1643–51.
  • Ginter E, Simko V, Weinrebova D, Ladecka Z. Novel potential for the management of Alzheimer disease. Bratisl Lek Listy 2015;116:580–1.
  • Maurice T. Protection by sigma-1 receptor agonists is synergic with donepezil, but not with memantine, in a mouse model of amyloid-induced memory impairments. Behav Brain Res 2016;296:270–8.
  • Peters O, Fuentes M, Joachim LK, et al. Combined treatment with memantine and galantamine-CR compared with galantamine-CR only in antidementia drug naïve patients with mild-to-moderate Alzheimer's disease. Alzheimers Dement 2015;1:198–204.
  • Worth AP, Cronin MT. Structure-permeability relationships for transcorneal penetration. Altern Lab Anim 2000;28:403–13.
  • Sugimoto H, Iimura Y, Yamanishi Y, Yamatsu K. Synthesis and structure-activity relationships of acetylcholinesterase inhibitors: 1-benzyl-4-[(5,6-dimethoxy-1-oxoindan-2-yl)methyl]piperidine hydrochloride and related compounds. J Med Chem 1995;38:4821–9.
  • Guo W, Quan P, Fang L, et al. Sustained release donepezil loaded PLGA microspheres for injection: preparation, in vitro and in vivo study. Asian J Pharm Sci 2015;10:405–14.
  • Saluja S, Kasha PC, Paturi J, et al. A novel electronic skin patch for delivery and pharmacokinetic evaluation of donepezil following transdermal iontophoresis. Int J Pharm 2013;453:395–9.
  • Kim KH, Gwak HS. Effects of vehicles on the percutaneous absorption of donepezil hydrochloride across the excised hairless mouse skin. Drug Dev Ind Pharm 2011;37:1125–30.
  • Lu J, Wan L, Zhong Y, Yu Q, et al. Stereoselective metabolism of donepezil and steady-state plasma concentrations of S-donepezil based on CYP2D6 polymorphisms in the therapeutic responses of Han Chinese patients with Alzheimer's disease. J Pharm Sci 2015;129:188–95.
  • Katakam P, Kalakuntla RR, Adiki SK, Chandu BR. Development and validation of a liquid chromatography mass spectrometry method for the determination of donepezil in human plasma. J Pharm Res 2013;7:720–6.
  • Dholkawala F, Voshavar C, Dutta AK. Synthesis and characterization of brain penetrant prodrug of neuroprotective D-264: potential therapeutic application in the treatment of Parkinson’s disease. Eur J Pharm Biopharm 2016;103:62–70.
  • Jin H, Kanthasamy A, Ghosh A, et al. Mitochondria-targeted antioxidants for treatment of Parkinson's disease: preclinical and clinical outcomes. Biochim Biophys Acta 2014;1842:1282–94.
  • Penko AL, Hirsch JR, Voelcker-Rehage C, et al. Asymmetrical pedaling patterns in Parkinson's disease patients. Clin Biomech 2014;29:1089–94.
  • Staudt MD, Di Sebastiano AR, Xu H, et al. Advances in neurotrophic factor and cell-based therapies for Parkinson's disease: a mini-review. Gerontology 2016;62:371–80.
  • Mata IF, Davis MY, Lopez AN, et al. The discovery of LRRK2 p.R1441S, a novel mutation for Parkinson's disease, adds to the complexity of a mutational hotspot. Am J Med Genet B Neuropsychiatr Genet 2016;171:925–30.
  • Nezhadi A, Ghazi F, Rassoli H, et al. BMSC and CoQ10 improve behavioural recovery and histological outcome in rat model of Parkinson's disease. Pathophysiology 2011;18:317–24.
  • Falkenburger BH, Saridaki T, Dinter E. Cellular models for Parkinson's disease. J Neurochem 2016;139(Suppl 1):121–30.
  • Fu LM, Fu KA. Analysis of Parkinson's disease pathophysiology using an integrated genomics-bioinformatics approach. Pathophysiology 2014;22:15–29.
  • Bae N, Ahn T, Chung S, et al. The neuroprotective effect of modified Yeoldahanso-tang via autophagy enhancement in models of Parkinson's disease. J Ethnopharmacol 2011;134:313–22.
  • Li XM, Ma HB, Ma ZQ, et al. Ameliorative and neuroprotective effect in MPTP model of Parkinson's disease by Zhen-Wu-Tang (ZWT), a traditional Chinese medicine. J Ethnopharmacol 2010;130:19–27.
  • Reichmann H. Transdermal delivery of dopamine receptor agonists. Parkinsonism Relat Disord 2009;15:S93–6.
  • Alty J, Robson J, Duggan-Carter P, Jamieson S. What to do when people with Parkinson's disease cannot take their usual oral medications. Pract Neurol 2016;16:122–8.
  • Zwibel HL, Smrtka J. Improving quality of life in multiple sclerosis: an unmet need. Am J Manag Care 2011;17:S139–45.
  • Ifergan I, Kebir H, Alvarez JI, et al. Central nervous system recruitment of effector memory CD8+ T lymphocytes during neuroinflammation is dependent on alpha4 integrin. Brain 2011;134:3560–77.
  • Walczak A, Siger M, Ciach A, et al. Transdermal application of myelin peptides in multiple sclerosis treatment. JAMA Neurol 2013;70:1105–9.
  • Compston A, Coles A. Multiple sclerosis. Lancet 2008;372:1502–17.
  • Mameli G, Arru G, Caggiu E, et al. Natalizumab therapy modulates miR-155, miR-26a and proinflammatory cytokine expression in MS patients. PLoS One 2016;11:e0157153.
  • Mokarizadeh A, Hassanzadeh K, Abdi M, et al. Transdermal delivery of bovine milk vesicles in patients with multiple sclerosis: a novel strategy to induce MOG-specific tolerance. Med Hypotheses 2015;85:141–4.
  • Kawamoto E, Nakahashi S, Okamoto T, et al. Anti-integrin therapy for multiple sclerosis. Autoimmune Dis 2012;2012:357101.
  • Yednock TA, Cannon C, Fritz LC, et al. Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. Nature 1992;356:63–6.
  • Killestein J, Rudick RA, Polman CH. Oral treatment for multiple sclerosis. Lancet Neurol 2011;10:1026–34.
  • Pépin J, Francelle L, Carrillo-de Sauvage MA, et al. In vivo imaging of brain glutamate defects in a knock-in mouse model of Huntington's disease. Neuroimage 2016;139:53–64.
  • Masuda N, Peng Q, Li Q, et al. Tiagabine is neuroprotective in the N171-82Q and R6/2 mouse models of Huntington's disease. Neurobiol Dis 2008;30:293–302.
  • Dun Yan H, Lim W, Woo Lee K, Kim J. Sera from amyotrophic lateral sclerosis patients reduce high-voltage activated Ca2+ currents in mice dorsal root ganglion neurons. Neurosci Lett 1997;235:69–72.
  • Kok AB. Ascorbate availability and neurodegeneration in amyotrophic lateral sclerosis. Med Hypotheses 1997;48:281–96.
  • Sorgato MC, Bertoli A. From cell protection to death: may Ca2+ signals explain the chameleonic attributes of the mammalian prion protein?. Biochem Biophys Res Commun 2009;379:171–4.
  • Eghiaian F, Grosclaude J, Lesceu S, et al. Insight into the PrPC–>PrPSc conversion from the structures of antibody-bound ovine prion scrapie-susceptibility variants. Proc Natl Acad Sci U S A 2004;101:10254–9.
  • Parchi P, Cescatti M, Notari S. Agent strain variation in human prion disease: insights from a molecular and pathological review of the national institutes of health series of experimentally transmitted disease. Brain 2010;133:3030–42.
  • Ita K. Transdermal delivery of heparin: physical enhancement techniques. Int J Pharm 2015;496:240–9.
  • Ita K. Transdermal iontophoretic drug delivery: advances and challenges. J Drug Target 2015;24:1–6.
  • Isaac M, Holvey C. Transdermal patches: the emerging mode of drug delivery system in psychiatry. Ther Adv Psychopharmacol 2012;2:255–63.
  • Ita KB. Transdermal drug delivery: progress and challenges. J Drug Deliv Sci Technol 2014;24:245–50.
  • Molinuevo JL, Arranz FJ. Impact of transdermal drug delivery on treatment adherence in patients with Alzheimer's disease. Expert Rev Neurother 2012;12:31–7.
  • Ita K. Recent progress in transdermal sonophoresis. Pharm Dev Technol 2015. [Epub ahead of print]. doi: http://dx.doi.org/10.3109/10837450.2015.1116566.
  • Lee SY, Jeong NY, Oh SY. Modulation of electroosmosis and flux through skin: effect of propylene glycol. Arch Pharm Res 2013;37:484–93.
  • Ita K. Transdermal delivery of drugs with microneedles: strategies and outcomes. J Drug Deliv Sci Technol 2015;29:16–23.
  • Burger C, Gerber M, du Preez JL, du Plessis J. Optimised transdermal delivery of pravastatin. Int J Pharm 2015;496:518–25.
  • Ita KB. Chemical penetration enhancers for transdermal drug delivery- success and challenge. Curr Drug Deliv 2015;12:645–51.
  • Andrews SN, Jeong E, Prausnitz MR. Transdermal delivery of molecules is limited by full epidermis, not just stratum corneum. Pharm Res 2013;30:1099–109.
  • Jepps OG, Dancik Y, Anissimov YG, Roberts MS. Modeling the human skin barrier–towards a better understanding of dermal absorption. Adv Drug Deliv Rev 2013;65:152–68.
  • Raphael AP, Meliga SC, Chen X, et al. Depth-resolved characterization of diffusion properties within and across minimally-perturbed skin layers. J Control Release 2013;166:87–94.
  • Cázares-Delgadillo J, Ganem-Rondero A, Merino V, Kalia YN. Controlled transdermal iontophoresis for poly-pharmacotherapy: simultaneous delivery of granisetron, metoclopramide and dexamethasone sodium phosphate in vitro and in vivo. Eur J Pharm Sci 2016;85:31–8.
  • Pham QD, Björklund Engblom S, Topgaard JD, et al. Chemical penetration enhancers in stratum corneum - relation between molecular effects and barrier function. J Control Release 2016;232:175–87.
  • Larrañeta E, Lutton REM, Woolfson AD, Donnelly RF. Microneedle arrays as transdermal and intradermal drug delivery systems: materials science, manufacture and commercial development. Mater Sci Eng R 2016;104:1–32.
  • Ita K. Transdermal delivery of vaccines - recent progress and critical issues. Biomed Pharmacother 2016;83:1080–8.
  • Polat BE, Blankschtein D, Langer R. Low-frequency sonophoresis: application to the transdermal delivery of macromolecules and hydrophilic drugs. Expert Opin Drug Deliv 2010;7:1415–32.
  • Guy RH, Hadgraft, J. Transdermal drug delivery systems: revised and expanded. 2nd ed. Boca Raton (FL): CRC Press; 2002.
  • Schoellhammer CM, Blankschtein D, Langer R. Skin permeabilization for transdermal drug delivery: recent advances and future prospects. Expert Opin Drug Deliv 2014;11:393–407.
  • Ita KB, Banga AK. In vitro transdermal iontophoretic delivery of penbutolol sulfate. Drug Deliv 2009;16:11–14.
  • Ita KB, Popova IE. Influence of sonophoresis and chemical penetration enhancers on percutaneous transport of penbutolol sulfate. Pharm Dev Technol 2015. [Epub ahead of print]. doi: http://dx.doi.org/10.3109/10837450.2015.1086373.
  • Legoabe LJ, Breytenbach JC, N'Da DD, Breytenbach JW. In-vitro transdermal penetration of cytarabine and its N4-alkylamide derivatives. J Pharm Pharmacol 2010;62:756–61.
  • Majumdar S, Mueller-Spaeth M, Sloan KB. Prodrugs of theophylline incorporating ethyleneoxy groups in the promoiety: synthesis, characterization, and transdermal delivery. AAPS PharmSciTech 2012;13:853–62.
  • Zorec B, Becker S, Reberšek M, et al. Skin electroporation for transdermal drug delivery: the influence of the order of different square wave electric pulses. Int J Pharm 2013;457:214–23.
  • Zorec B, Jelenc J, Miklavčič D, Pavšelj N. Ultrasound and electric pulses for transdermal drug delivery enhancement: ex vivo assessment of methods with in vivo oriented experimental protocols. Int J Pharm 2015;490:65–73.
  • Kaur M, Ita KB, Popova IE, et al. Microneedle-assisted delivery of verapamil hydrochloride and amlodipine besylate. Eur J Pharm Biopharm 2014;86:284–91.
  • Kim KS, Ita K, Simon L. Modelling of dissolving microneedles for transdermal drug delivery: theoretical and experimental aspects. Eur J Pharm Sci 2015;68:137–43.
  • Tesselaar E, Sjöberg F. Transdermal iontophoresis as an in-vivo technique for studying microvascular physiology. Microvasc Res 2011;81:88–96.
  • Hirvonen J, Guy RH. Transdermal iontophoresis: modulation of electroosmosis by polypeptides. J Control Release 1998;50:283–9.
  • ter Haar G. Therapeutic applications of ultrasound. Prog Biophys Mol Biol 2007;93:111–29.
  • Azagury A, Khoury L, Enden G, Kost J. Ultrasound mediated transdermal drug delivery. Adv Drug Deliv Rev 2014;72:127–43.
  • Polat BE, Hart D, Langer R, Blankschtein D. Ultrasound-mediated transdermal drug delivery: mechanisms, scope, and emerging trends. J Control Release 2011;152:330–48.
  • Ogura M, Paliwal S, Mitragotri S. Low-frequency sonophoresis: current status and future prospects. Adv Drug Deliv Rev 2008;60:1218–23.
  • Rich KT, Hoerig CL, Rao MB, Mast TD. Relations between acoustic cavitation and skin resistance during intermediate- and high-frequency sonophoresis. J Control Release 2014;194:266–77.
  • Krasovitski B, Frenkel V, Shoham S, Kimmel E. Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects. Proc Natl Acad Sci USA 2011;108:3258–63.
  • Bhatnagar S, Schiffter H, Coussios CC. Exploitation of acoustic cavitation-induced microstreaming to enhance molecular transport. J Pharm Sci 2014;103:1903–12.
  • van Zyl L, du Preez J, Gerber M, et al. Essential fatty acids as transdermal penetration enhancers. J Pharm Sci 2016;105:188–93.
  • Ita KB. Prodrugs for transdermal drug delivery - trends and challenges. J Drug Target 2016:24:1–8.
  • Ita K. Perspectives on transdermal electroporation. Pharmaceutics 2016;8:9.
  • Charoo NA, Rahman Z, Repka MA, Murthy SN. Electroporation: an avenue for transdermal drug delivery. Curr Drug Deliv 2010;7:125–36.
  • Hoang MT, Ita KB, Bair DA. Solid microneedles for transdermal delivery of amantadine hydrochloride and pramipexole dihydrochloride. Pharmaceutics 2015;7:379–96.
  • Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev 2012;64:1547–68.
  • Donnelly RF, McCrudden MT, Zaid Alkilani A, et al. Hydrogel-forming microneedles prepared from “super swelling” polymers combined with lyophilised wafers for transdermal drug delivery. PLoS One 2014;9:e111547.
  • Bystrova S, Luttge R. Micromolding for ceramic microneedle arrays. Microelectron Eng 2011;88:1681–4.
  • Vinayakumar KB, Hegde GM, Nayak MM, et al. Fabrication and characterization of gold coated hollow silicon microneedle array for drug delivery. Microelectron Eng 2014;128:12–18.
  • Ita K. Transdermal delivery of drugs with microneedles-potential and challenges. Pharmaceutics 2015;7:90–105.
  • Gill HS, Prausnitz MR. Coated microneedles for transdermal delivery. J Control Release 2007;117:227–37.
  • Choi J, Choi MK, Chong S, et al. Effect of fatty acids on the transdermal delivery of donepezil: in vitro and in vivo evaluation. Int J Pharm 2012;422:83–90.
  • Galipoglu M, Erdal MS, Gungor S. Biopolymer-based transdermal films of donepezil as an alternative delivery approach in Alzheimer's disease treatment. AAPS PharmSciTech 2015;16:284–92.
  • Reñé R, Ricart J, Hernández B. From high doses of oral rivastigmine to transdermal rivastigmine patches: user experience and satisfaction among caregivers of patients with mild to moderate Alzheimer disease. Neurología 2014;29:86–93.
  • Kurz A, Farlow M, Lefevre G. Pharmacokinetics of a novel transdermal rivastigmine patch for the treatment of Alzheimer's disease: a review. Int J Clin Pract 2009;63:799–805.
  • Yu ZW, Liang Y, Liang WQ. Low-frequency sonophoresis enhances rivastigmine permeation in vitro and in vivo. Pharmazie 2015;70:379–80.
  • Park CW, Son DD, Kim JY, et al. Investigation of formulation factors affecting in vitro and in vivo characteristics of a galantamine transdermal system. Int J Pharm 2012;436:32–40.
  • Inden M.K, Takata D, Yanagisawa E, et al. α4 nicotinic acetylcholine receptor modulated by galantamine on nigrostriatal terminals regulates dopamine receptor-mediated rotational behavior. Neurochem Int 2016;94:74–81.
  • Li WZ, Huo MR, Zhou JP, et al. Super-short solid silicon microneedles for transdermal drug delivery applications. Int J Pharm 2010;389:122–9.
  • Mancini M, Ghiglieri V, Bagetta V, et al. Memantine alters striatal plasticity inducing a shift of synaptic responses toward long-term depression. Neuropharmacology 2016;101:341–50.
  • Devi L, Ohno M. Cognitive benefits of memantine in Alzheimer's 5XFAD model mice decline during advanced disease stages. Pharmacol Biochem Behav 2016:144;60–6.
  • Carrillo-Mora P, Silva-Adaya D, Villaseñor-Aguayo K. Glutamate in Parkinson's disease: role of antiglutamatergic drugs. Basal Ganglia 2013;3:147–57.
  • del Rio-Sancho S, Serna-Jimenez CE, Calatayud-Pascual MA,. Transdermal absorption of memantin–effect of chemical enhancers, iontophoresis, and role of enhancer lipophilicity. Eur J Pharm Biopharm 2012;82:164–70.
  • Kalaria DR, Patel P, Merino V, et al. Controlled iontophoretic delivery of pramipexole: electrotransport kinetics in vitro and in vivo. Eur J Pharm Biopharm 2014;88:56–63.
  • Chen JJ, Swope DM, Dashtipour K. Comprehensive review of rasagiline, a second-generation monoamine oxidase inhibitor, for the treatment of Parkinson's Disease. Clin Ther 2007;29:1825–49.
  • Kalaria DR, Patel P, Patravale V, Kalia YN. Comparison of the cutaneous iontophoretic delivery of rasagiline and selegiline across porcine and human skin in vitro. Int J Pharm 2012;438:202–8.
  • Tsai MJ, Fu YS, Lin YH, et al. The effect of nanoemulsion as a carrier of hydrophilic compound for transdermal delivery. PLoS One 2014;9:e102850.
  • Patel P, Pol A, More S, et al. Colloidal soft nanocarrier for transdermal delivery of dopamine agonist: ex vivo and in vivo evaluation. J Biomed Nanotechnol 2014;10:3291–303.
  • Singh ND, Banga AK. Controlled delivery of ropinirole hydrochloride through skin using modulated iontophoresis and microneedles. J Drug Target 2013;21:354–66.
  • Kankkunen T, Huupponen I, Lahtinen K, et al. Improved stability and release control of levodopa and metaraminol using ion-exchange fibers and transdermal iontophoresis. Eur J Pharm Sci 2002;16:273–80.
  • Goole J, Amighi K. Levodopa delivery systems for the treatment of Parkinson's disease: an overview. Int J Pharm 2009;380:1–15.
  • McAfee DA, Hadgraft J, Lane ME. Rotigotine: the first new chemical entity for transdermal drug delivery. Eur J Pharm Biopharm 2014;88:586–93.
  • Lee KE, Choi YJ, Oh BR, et al. Formulation and in vitro/in vivo evaluation of levodopa transdermal delivery systems. Int J Pharm 2013;456:432–6.
  • Nalluri BN, Kosuri S, Valluru SSA et al. Microneedle assisted transdermal delivery of levodopa. Indian J Pharm Educ Res 2016;50:287–94.
  • Krause W, Dusterberg B, Jakobs U, Hoyer GA. Biotransformation of proterguride in the perfused rat liver. Drug Metab Dispos 1993;21:203–8.
  • Schurad B, Horowski R, Jähnichen S, et al. Proterguride, a highly potent dopamine receptor agonist promising for transdermal administration in Parkinson's disease: interactions with α1-, 5-HT2- and H1-receptors. Life Sci 2006;78:2358–64.
  • Schurad B, Tack J, Lipp R. Evaluation of the transdermal permeation behavior of Proterguride from drug in adhesive matrix patches through hairless mouse skin. Drug Dev Ind Pharm 2005;31:505–13.
  • Nugroho AK, Li G, Grossklaus A, et al. Transdermal iontophoresis of rotigotine: influence of concentration, temperature and current density in human skin in vitro. J Control Release 2004;96:159–67.
  • Pham DQ, Nogid A. Rotigotine transdermal system for the treatment of Parkinson's disease. Clin Ther 2008;30:813–24.
  • Hinnell C, Hulse N, Martin A, Samuel M. Hypersexuality and compulsive over-eating associated with transdermal dopamine agonist therapy. Parkinsonism Relat Disord 2011;17:295–6.
  • Elshoff JP, Cawello W, Andreas JO, et al. An update on pharmacological, pharmacokinetic properties and drug-drug interactions of rotigotine transdermal system in Parkinson's disease and restless legs syndrome. Drugs 2015;75:487–501.
  • Thompson AG, Thomas R. Induction of immune tolerance by dendritic cells: implications for preventative and therapeutic immunotherapy of autoimmune disease. Immunol Cell Biol 2002;80:509–19.
  • Buttmann M, Seuffert L, Mader U, Toyka KV. Malignancies after mitoxantrone for multiple sclerosis: a retrospective cohort study. Neurology 2016;86:2203–7.
  • Yu X, Du L, Li Y, et al. Improved anti-melanoma effect of a transdermal mitoxantrone ethosome gel. Biomed Pharmacother 2015;73:6–11.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.