259
Views
17
CrossRef citations to date
0
Altmetric
Original Article

Nebulized anionic guanidinylated O-carboxymethyl chitosan/N-2-hydroxypropyltimehyl ammonium chloride chitosan nanoparticles for siRNA pulmonary delivery: preparation, characterization and in vitro evaluation

, , , , &
Pages 451-462 | Received 04 Nov 2016, Accepted 26 Dec 2016, Published online: 01 Feb 2017

References

  • Lam JKW, Liang W, Chan HK. Pulmonary delivery of therapeutic siRNA. Adv Drug Deliv Rev 2012;64:1–15.
  • Merkel OM, Rubinstein I, Kissel T. siRNA delivery to the lung: what's new? Adv Drug Deliv Rev 2014;75:112–28.
  • Duceppe N, Tabrizian M. Advances in using chitosan-based nanoparticles for in vitro and in vivo drug and gene delivery. Expert Opin Drug Deliv 2010;7:1191–207.
  • Rudzinski WE, Aminabhavi TM. Chitosan as a carrier for targeted delivery of small interfering RNA. Int J Pharm 2010;399:1–11.
  • Gao Y, Wang ZY, Zhang J, et al. RVG-peptide-linked trimethylated chitosan for delivery of siRNA to the brain. Biomacromolecules 2014;15:1010–18.
  • Guzman-Villanueva D, El-Sherbiny IM, Vlassov AV, et al. Enhanced cellular uptake and gene silencing activity of siRNA molecules mediated by chitosan-derivative nanocomplexes. Int J Pharm 2014;473:579–90.
  • Pereira P, Pedrosa SS, Wymant JM, et al. siRNA inhibition of endocytic pathways to characterize the cellular uptake mechanisms of folate-functionalized glycol chitosan nanogels. Mol Pharm 2015;12:1970–9.
  • Dehousse V, Garbacki N, Jaspart S, et al. Comparison of chitosan/siRNA and trimethylchitosan/siRNA complexes behaviour in vitro. Int J Biol Macromol 2010;46:342–9.
  • Sadio A, Gustafsson JK, Pereira B, et al. Modified-chitosan/siRNA nanoparticles downregulate cellular CDX2 expression and cross the gastric mucus barrier. PLoS One 2014;9:e99449.
  • Li GF, Wang JC, Feng XM, et al. Preparation and testing of quaternized chitosan nanoparticles as gene delivery vehicles. Appl Biochem Biotechnol 2015;175:3244–57.
  • Huang H, Li Y, Sa Z, et al. A smart drug delivery system from charge-conversion polymer-drug conjugate for enhancing tumor therapy and tunable drug release. Macromol Biosci 2014;14:485–90.
  • Jin YH, Hu HY, Qiao MX, et al. pH-sensitive chitosan-derived nanoparticles as doxorubicin carriers for effective anti-tumor activity: preparation and in vitro evaluation. Colloids Surf B Biointerfaces 2012;94:184–91.
  • Li Y, Yang J, Xu B, et al. Enhanced therapeutic siRNA to tumor cells by a pH-sensitive agmatine-chitosan bioconjugate. ACS Appl Mater Interfaces 2015;7:8114–24.
  • Liu J, Huang Y, Kumar A, et al. pH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnol Adv 2014;32:693–710.
  • Ma D. Enhancing endosomal escape for nanoparticle mediated siRNA delivery. Nanoscale 2014;6:6415–25.
  • Upadhyaya L, Singh J, Agarwal V, et al. The implications of recent advances in carboxymethyl chitosan based targeted drug delivery and tissue engineering applications. J Control Release 2014;186:54–87.
  • Feng C, Wang Z, Jiang C, et al. Chitosan/o-carboxymethyl chitosan nanoparticles for efficient and safe oral anticancer drug delivery: in vitro and in vivo evaluation. Int J Pharm 2013;457:158–67.
  • Jin Z, Li W, Cao H, et al. Antimicrobial activity and cytotoxicity of N-2-HACC and characterization of nanoparticles with N-2-HACC and CMC as a vaccine carrier. Chem Eng J 2013;221:331–41.
  • Xie Y, Qiao H, Su Z, et al. PEGylated carboxymethyl chitosan/calcium phosphate hybrid anionic nanoparticles mediated hTERT siRNA delivery for anticancer therapy. Biomaterials 2014;35:7978–91.
  • Li P, Liu D, Miao L, et al. A pH-sensitive multifunctional gene carrier assembled via layer-by-layer technique for efficient gene delivery. Int J Nanomed 2012;7:925–39.
  • Yao Y, Su Z, Liang Y, et al. pH-Sensitive carboxymethyl chitosan-modified cationic liposomes for sorafenib and siRNA co-delivery. Int J Nanomed 2015;10:6185–98.
  • Mitchell DJ, Steinman L, Kim DT, et al. Polyarginine enters cells more efficiently than other polycationic homopolymers. J Pept Res 2000;56:318–25.
  • Carlson PM, Schellinger JG, Pahang JA, et al. Comparative study of guanidine-based and lysine-based brush copolymers for plasmid delivery. Biomater Sci 2013;1:736–44.
  • Cheng Q, Huang Y, Zheng H, et al. The effect of guanidinylation of PEGylated poly(2-aminoethyl methacrylate) on the systemic delivery of siRNA. Biomaterials 2013;34:3120–31.
  • Li L, Vorobyov I, Allen TW. The different interactions of lysine and arginine side chains with lipid membranes. J Phys Chem B 2013;117:1906–11920.
  • Kim Y, Binauld S, Stenzel MH. Zwitterionic guanidine-based oligomers mimicking cell-penetrating peptides as a nontoxic alternative to cationic polymers to enhance the cellular uptake of micelles. Biomacromolecules 2012;13:3418–26.
  • Luo Y, Zhai X, Ma C, et al. An inhalable β 2-adrenoceptor ligand-directed guanidinylated chitosan carrier for targeted delivery of siRNA to lung. J Control Release 2012;162:28–36.
  • Qi R, Wu S, Xiao H, et al. Guanidinated amphiphilic cationic copolymer with enhanced gene delivery efficiency. J Mater Chem 2012;22:18915–22.
  • Okuda T, Kito D, Oiwa A, et al. Gene silencing in a mouse lung metastasis model by an inhalable dry small interfering RNA powder prepared using the supercritical carbon dioxide technique. Biol Pharm Bull 2013;36:1183–91.
  • Durcan N, Murphy C, Cryan SA. Inhalable siRNA: potential as a therapeutic agent in the lungs. Mol Pharm 2008;5:559–66.
  • Ewe A, Aigner A. Nebulization of liposome-polyethylenimine complexes (lipopolyplexes) for DNA or siRNA delivery: physicochemical properties and biological activity. Eur J Lipid Sci Technol 2014;116:1195–204.
  • Nielsen EJB, Nielsen JM, Becker D, et al. Pulmonary gene silencing in transgenic EGFP mice using aerosolised chitosan/siRNA nanoparticles. Pharm Res 2010;27:2520–7.
  • Steele TWJ, Zhao X, Tarcha P, et al. Factors influencing polycation/siRNA colloidal stability toward aerosol lung delivery. Eur J Pharm Biopharm 2012;80:14–24.
  • Xu J, Huang H, Pan C, et al. Nicotine inhibits apoptosis induced by cisplatin in human oral cancer cells. Int J Oral Maxillofac Surg 2007;36:739–44.
  • Chu DSH, Bocek MJ, Shi J, et al. Multivalent display of pendant pro-apoptotic peptides increases cytotoxic activity. J Control Release 2015;205:155–61.
  • Shi B, Shen Z, Zhang H, et al. Exploring N-imidazolyl-O-carboxymethyl chitosan for high performance gene delivery. Biomacromolecules 2011;13:146–53.
  • Kapellos G, Polonifi K, Farmakis D, et al. Levels of survivin in lung cancer patients. Eur J Int Med 2013;24:647–8.
  • Chuwa AH, Sone K, Oda K, et al. Significance of survivin as a prognostic factor and a therapeutic target in endometrial cancer. Gynecol Oncol 2016;141:564–9.
  • Yang F, Huang W, Li Y, et al. Anti-tumor effects in mice induced by survivin-targeted siRNA delivered through polysaccharide nanoparticles. Biomaterials 2013;34:5689–99.
  • Geisberger G, Gyenge EB, Maake C, et al. Trimethyl and carboxymethyl chitosan carriers for bio-active polymer-inorganic nanocomposites. Carbohydr Polym 2013;91:58–67.
  • Rawat A, Yang T, Hussain A, et al. Complexation of a poly-L-arginine with low molecular weight heparin enhances pulmonary absorption of the drug. Pharm Res 2008;25:36–948.
  • Zhai X, Sun P, Luo Y, et al. Guanidinylation: a simple way to fabricate cell penetrating peptide analogue-modified chitosan vector for enhanced gene delivery. J Appl Polym Sci 2011;121:3569–78.
  • Bromberg L, Raduyk S, Hatton TA, et al. Guanidinylated polyethyleneimine − polyoxypropylene-polyoxyethylene conjugates as gene transfection agents. Bioconjug Chem 2009;20:1044–53.
  • Rothbard JB, Jessop TC, Wender PA. Adaptive translocation: the role of hydrogen bonding and membrane potential in the uptake of guanidinium-rich transporters into cells. Adv Drug Deliv Rev 2005;57:495–504.
  • Li Y, Tian H, Ding J, et al. Guanidinated thiourea-decorated polyethylenimines for enhanced membrane penetration and efficient siRNA delivery. Adv Healthc Mater 2015;4:1369–75.
  • Moreira C, Oliveira H, Pires LR, et al. Improving chitosan-mediated gene transfer by the introduction of intracellular buffering moieties into the chitosan backbone. Acta Biomater 2009;5:2995–3006.
  • Yacobi NR, Malmstadt N, Fazlollahi F, et al. Mechanisms of alveolar epithelial translocation of a defined population of nanoparticles. Am J Respir Cell Mol Biol 2010;42:604–14.
  • Kim T, Rothmund T, Kissel T, et al. Bioreducible polymers with cell penetrating and endosome buffering functionality for gene delivery systems. J Control Release 2011;152:110–19.
  • Hu Y, Litwin T, Nagaraja AR, et al. Cytosolic delivery of membrane-impermeable molecules in dendritic cells using pH-responsive core-shell nanoparticles. Nano Lett 2007;7:3056–64.
  • Itaka K, Ishii T, Hasegawa Y, et al. Biodegradable polyamino acid-based polycations as safe and effective gene carrier minimizing cumulative toxicity. Biomaterials 2010;31:3707–14.
  • Sharma K, Somavarapu S, Colombani A, et al. Nebulised siRNA encapsulated crosslinked chitosan nanoparticles for pulmonary delivery. Int J Pharm 2013;455:241–7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.