298
Views
44
CrossRef citations to date
0
Altmetric
Original Article

Doxorubicin-conjugated D-glucosamine- and folate- bi-functionalised InP/ZnS quantum dots for cancer cells imaging and therapy

, , , , , & ORCID Icon show all
Pages 267-277 | Received 24 May 2017, Accepted 06 Aug 2017, Published online: 30 Aug 2017

References

  • Gill J, Sullivan R, Taylor D. Overcoming cancer in the 21st century. London: UCL School of Pharmacy; 2015. p. 1–31
  • Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer. 2005;5:161–171.
  • Koziara JM, Lockman PR, Allen DD, et al. Paclitaxel nanoparticles for the potential treatment of brain tumors. J Control Release. 2004;99:259–269.
  • Kry SF, Salehpour M, Followill DS, et al. The calculated risk of fatal secondary malignancies from intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys. 2005;62:1195–1203.
  • Koziara JM, Whisman TR, Tseng MT, et al. In-vivo efficacy of novel paclitaxel nanoparticles in paclitaxel-resistant human colorectal tumors. J Control Release. 2006;112:312–319.
  • Eskandani M, Nazemiyeh H. Self-reporter shikonin-Act-loaded solid lipid nanoparticle: Formulation, physicochemical characterization and geno/cytotoxicity evaluation. Eur J Pharm Sci. 2014;59:49–57.
  • Eskandani M, Barar J, Dolatabadi JEN, et al. Formulation, characterization, and geno/cytotoxicity studies of galbanic acid-loaded solid lipid nanoparticles. Pharm Biol. 2015;53:1525–1538.
  • Barar J, Omidi Y. Surface modified multifunctional nanomedicines for simultaneous imaging and therapy of cancer. Bioimpacts. 2014;4:3–14.
  • Omidi Y. Smart multifunctional theranostics: simultaneous diagnosis and therapy of cancer. Bioimpacts. 2011;1:145–147.
  • Matthaiou EI, Barar J, Sandaltzopoulos R, et al. Shikonin-loaded antibody-armed nanoparticles for targeted therapy of ovarian cancer. Int J Nanomedicine. 2014;9:1855–1870.
  • Johari-Ahar M, Barar J, Alizadeh AM, et al. Methotrexate-conjugated quantum dots: synthesis, characterisation and cytotoxicity in drug resistant cancer cells. J Drug Target. 2016;24:120–133.
  • Same S, Aghanejad A, Akbari Nakhjavani S, et al. Radiolabeled theranostics: magnetic and gold nanoparticles. Bioimpacts. 2016;6:169–181.
  • Rahmanian N, Eskandani M, Barar J, et al. Recent trends in targeted therapy of cancer using graphene oxide-modified multifunctional nanomedicines. J Drug Target. 2017;25:202–215.
  • Probst CE, Zrazhevskiy P, Bagalkot V, et al. Quantum dots as a platform for nanoparticle drug delivery vehicle design. Adv Drug Deliv Rev. 2013;65:703–718.
  • Mashinchian O, Johari-Ahar M, Ghaemi B, et al. Impacts of quantum dots in molecular detection and bioimaging of cancer. Bioimpacts. 2014;4:149–166.
  • Reiss P, Protiere M, Li L. Core/shell semiconductor nanocrystals. Small. 2009;5:154–168.
  • Dickerson BD. Organometallic synthesis kinetics of CdSe quantum dots. Virginia Tech; 2005.
  • Sargent EH. Colloidal quantum dot solar cells. Nature Photon. 2012;6:133–135.
  • Derfus AM, Chan WC, Bhatia SN. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 2004;4:11–18.
  • Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, et al. Quantum dots versus organic dyes as fluorescent labels. Nat Methods. 2008;5:763–775.
  • Su Y, He Y, Lu H, et al. The cytotoxicity of cadmium based, aqueous phase–synthesized, quantum dots and its modulation by surface coating. Biomaterials. 2009;30:19–25.
  • Chen N, He Y, Su Y, et al. The cytotoxicity of cadmium-based quantum dots. Biomaterials. 2012;33:1238–1244.
  • Dubertret B, Skourides P, Norris DJ, et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science. 2002;298:1759–1762.
  • Zhelev Z, Ohba H, Bakalova R. Single quantum dot-micelles coated with silica shell as potentially non-cytotoxic fluorescent cell tracers. J Am Chem Soc. 2006;128:6324–6325.
  • Pan J, Feng SS. Targeting and imaging cancer cells by folate-decorated, quantum dots (QDs)-loaded nanoparticles of biodegradable polymers. Biomaterials. 2009;30:1176–1183.
  • Majd MH, Asgari D, Barar J, et al. Tamoxifen loaded folic acid armed PEGylated magnetic nanoparticles for targeted imaging and therapy of cancer. Colloids Surf B Biointerfaces. 2013;106:117–125.
  • Majd MH, Asgari D, Barar J, et al. Specific targeting of cancer cells by multifunctional mitoxantrone-conjugated magnetic nanoparticles. J Drug Target. 2013;21:328–340.
  • Korotcov AV, Ye Y, Chen Y, et al. Glucosamine-linked near-infrared fluorescent probes for imaging of solid tumor xenografts. Mol Imaging Biol. 2012;14:443–451.
  • Igawa K, Xie MF, Ohba H, et al. D-glucosamine conjugation accelerates the labeling efficiency of quantum dots in osteoblastic cells. BioMed Res Int. 2014;2014:821607.
  • Kim DS, Park KS, Jeong KC, et al. Glucosamine is an effective chemo-sensitizer via transglutaminase 2 inhibition. Cancer Lett. 2009;273:243–249.
  • Omidi Y, Barar J. Targeting tumor microenvironment: crossing tumor interstitial fluid by multifunctional nanomedicines. Bioimpacts. 2014;4:55–67.
  • Xie R, Battaglia D, Peng X. Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared. J Am Chem Soc. 2007;129:15432–15433.
  • Gu X. A novel approach to formulation of anticancer drugs in nanoparticles. Ann Arbor (MI): University of Michigan; 2008.
  • Bian X. Anti-egFr-irgD recombinant protein conjugated silk fibroin nanoparticles for enhanced tumor targeting and antitumor efficiency. OncoTargets Ther. 2016;9:3153–3162.
  • Battaglia D, Peng X. Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent. Nano Lett. 2002;2:1027–1030.
  • Xu S, Kumar S, Nann T. Rapid synthesis of high-quality InP nanocrystals. J Am Chem Soc. 2006;128:1054–1055.
  • Navazi ZR, Nemati A, Akbari H, et al. The effect of fatty amine chain length on synthesis process of Inp/Zns quantum dots. Orient J Chem. 2016;32:2163–2169.
  • Müllen K, Scherf U. Organic light emitting devices: synthesis, properties and applications. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2006.
  • Blackman BR. Efficient and stable near infrared emitters using band gap engineered quantum dots for biomedical applications. University of Arkansas; 2007.
  • Takagahara T, Takeda K. Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. Phys Rev B Condens Matter. 1992;46:15578.
  • Alivisatos AP. Semiconductor clusters, nanocrystals, and quantum dots. Science. 1996;271:933.
  • Klimov V, Mikhailovsky A, Xu S, et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science. 2000;290:314–317.
  • Zhang X, Chibli H, Kong D, et al. Comparative cytotoxicity of gold-doxorubicin and InP-doxorubicin conjugates. Nanotechnology. 2012;23:275103.
  • Brunetti V, Chibli H, Fiammengo R, et al. InP/ZnS as a safer alternative to CdSe/ZnS core/shell quantum dots: in vitro and in vivo toxicity assessment. Nanoscale. 2013;5:307–317.
  • Liu BR, Winiarz JG, Moon JS, et al. Synthesis, characterization and applications of carboxylated and polyethylene-glycolated bifunctionalized InP/ZnS quantum dots in cellular internalization mediated by cell-penetrating peptides. Colloids Surf B Biointerfaces. 2013;111:162–170.
  • Liu J, Hu R, Liu J, et al. Cytotoxicity assessment of functionalized CdSe, CdTe and InP quantum dots in two human cancer cell models. Mater Sci Eng C Mater Biol Appl. 2015;57:222–231.
  • Bharali DJ, Lucey DW, Jayakumar H, et al. Folate-receptor-mediated delivery of InP quantum dots for bioimaging using confocal and two-photon microscopy. J Am Chem Soc. 2005;127:11364–11371.
  • Massadeh S, Xu S, Nann T. Synthesis and exploitation of InP/ZnS quantum dots for bioimaginged. SPIE BiOS: Biomedical Optics International Society for Optics and Photonics, 718902-718902-11; 2009.
  • Yong KT, Ding H, Roy I, et al. Imaging pancreatic cancer using bioconjugated InP quantum dots. Acs Nano. 2009;3:502–510.
  • Stasiuk GJ, Tamang S, Imbert D, et al. Cell-permeable Ln (III) chelate-functionalized InP quantum dots as multimodal imaging agents. Acs Nano. 2011;5:8193–8201.
  • Zhu G, Huang Y, Bhave G, et al. In situ growth of fluorescent silicon nanocrystals in a monolithic microcapsule as a photostable, versatile platform. Nanoscale. 2016;8:15645–15657.
  • Barar J, Kafil V, Majd MH, et al. Multifunctional mitoxantrone-conjugated magnetic nanosystem for targeted therapy of folate receptor-overexpressing malignant cells. J Nanobiotechnology. 2015;13:26.
  • Uldry M, Ibberson M, Hosokawa M, et al. GLUT2 is a high affinity glucosamine transporter. FEBS Lett. 2002;524:199–203.
  • Kalsi KK, Baker EH, Medina RA, et al. Apical and basolateral localisation of GLUT2 transporters in human lung epithelial cells. Pflugers Arch – Eur J Physiol. 2008;456:991–1003.
  • Egawa-Takata T, Endo H, Fujita M, et al. Early reduction of glucose uptake after cisplatin treatment is a marker of cisplatin sensitivity in ovarian cancer. Cancer Sci. 2010;101:2171–2178.
  • Moghimi SM. Nanoparticle patterning for biomedicine. Bioimpacts. 2016;6:183–185.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.