345
Views
12
CrossRef citations to date
0
Altmetric
Review Article

Functionalised nanostructures for transdermal delivery of drug cargos

, , ORCID Icon, ORCID Icon &
Pages 110-122 | Received 02 Mar 2017, Accepted 22 Aug 2017, Published online: 18 Sep 2017

References

  • Alexander A, Dwivedi S, Giri TK, et al. Approaches for breaking the barriers of drug permeation through transdermal drug delivery. J Control Release. 2012;164:26–40.
  • Igarashi T, Nishino K, Nayar SK. The appearance of human skin: a survey. Found Comput Graph Vis. 2007;3:1–95.
  • Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009;3:16–20.
  • Mcneil SE. Nanotechnology for the biologist. J Leukoc Biol. 2005;78:585–594.
  • Grumezescu EAA. 2017. Nanostructures for drug delivery. Amsterdam: Elsevier.
  • Hughes GA. Nanostructure-mediated drug delivery. Nanomedicine. 2005;1:22–30.
  • Escobar-Chávez JJ, Revilla-Vázquez AL, Domínguez-Delgado CL, et al. 2012. Nanocarrier systems for transdermal drug delivery. Rijeka: INTECH Open Access Publisher.
  • Baldwin AD, Kiick KL. Polysaccharide‐modified synthetic polymeric biomaterials. Pept Sci. 2010;94:128–140.
  • Krishna OD, Kiick KL. Protein‐and peptide‐modified synthetic polymeric biomaterials. Pept Sci. 2010;94:32–48.
  • Chaudhary Z, Ahmed N, Ur-Rehman A, et al. Lipid polymer hybrid carrier systems for cancer targeting: a review. Int J Polymeric Mater Polymeric Biomater. Forthcoming. [cited 2017 Apr 11]. DOI:10.1080/00914037.2017.1300900
  • Katikaneni S. Transdermal delivery of biopharmaceuticals: dream or reality? Ther Deliv. 2015;6:1109–1116.
  • Prow TW, Grice JE, Lin LL, et al. Nanoparticles and microparticles for skin drug delivery. Adv Drug Deliv Rev. 2011;63:470–491.
  • Zorko M, Langel Ü. Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv Drug Deliv Rev. 2005;57:529–545.
  • Deshayes S, Morris M, Divita G, et al. Cell-penetrating peptides: tools for intracellular delivery of therapeutics. Cell Mol Life Sci. 2005;62:1839–1849.
  • Carmona-Ribeiro AM. Biomimetic nanoparticles: preparation, characterization and biomedical applications. Int J Nanomed. 2010;5:249.
  • Vladkova TG. Surface engineered polymeric biomaterials with improved biocontact properties. Int J Polymer Sci. 2010;2010:296094.
  • Avti PK, Patel SC, Sitharaman B. 2011. Nanobiomaterials: current status and future prospects. Taylor and Francis Group, LLC.
  • Owens DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307:93–102.
  • Nel AE, Mädler L, Velegol D, et al. Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater. 2009;8:543–557.
  • Hou YW, Chan MH, Hsu HR, et al. Transdermal delivery of proteins mediated by non‐covalently associated arginine‐rich intracellular delivery peptides. Exp Dermatol. 2007;16:999–1006.
  • Guo Z, Peng H, Kang J, et al. Cell-penetrating peptides: possible transduction mechanisms and therapeutic applications (Review). Biomed Rep. 2016;4:528–534.
  • Bechara C, Sagan S. Cell-penetrating peptides: 20 years later, where do we stand? FEBS Lett. 2013;587:1693–1702.
  • Mout R, Moyano DF, Rana S, et al. Surface functionalization of nanoparticles for nanomedicine. Chem Soc Rev. 2012;41:2539–2544.
  • Lopes LB, Furnish E, Komalavilas P, et al. Enhanced skin penetration of P20 phosphopeptide using protein transduction domains. Eur J Pharm Biopharm. 2008;68:441–445.
  • Pepe D, Mccall M, Zheng H, et al. Protein transduction domain‐containing microemulsions as cutaneous delivery systems for an anticancer agent. J Pharm Sci. 2013;102:1476–1487.
  • Cohen-Avrahami M, Shames AI, Ottaviani MF, et al. On the correlation between the structure of lyotropic carriers and the delivery profiles of two common NSAIDs. Colloids Surf B Biointerfaces. 2014;122:231–240.
  • Shelke NB, James R, Laurencin CT, et al. Polysaccharide biomaterials for drug delivery and regenerative engineering. Polym Adv Technol. 2014;25:448–460.
  • Saravanakumar G, Jo D-G, H Park J. Polysaccharide-based nanoparticles: a versatile platform for drug delivery and biomedical imaging. Curr Med Chem. 2012;19:3212–3229.
  • Nasrollahi SA, Taghibiglou C, Azizi E, et al. Cell-penetrating peptides as a novel transdermal drug delivery system. Chem Biol Drug Des. 2012;80:639–646.
  • Lopes LB, Brophy CM, Furnish E, et al. Comparative study of the skin penetration of protein transduction domains and a conjugated peptide. Pharm Res. 2005;22:750–757.
  • Kumar S, Zakrewsky M, Chen M, et al. Peptides as skin penetration enhancers: mechanisms of action. J Control Release. 2015;199:168–178.
  • Kwon SS, Kim SY, Kong BJ, et al. Cell penetrating peptide conjugated liposomes as transdermal delivery system of Polygonumaviculare L. extract. Int J Pharm. 2015;483:26–37.
  • Patlolla RR, Desai PR, Belay K, et al. Translocation of cell penetrating peptide engrafted nanoparticles across skin layers. Biomaterials. 2010;31:5598–5607.
  • Ridolfi DM, Marcato PD, Justo GZ, et al. Chitosan-solid lipid nanoparticles as carriers for topical delivery of tretinoin. Colloids Surf B Biointerfaces. 2012;93:36–40.
  • Lee P-W, Hsu S-H, Tsai J-S, et al. Multifunctional core-shell polymeric nanoparticles for transdermal DNA delivery and epidermal Langerhans cells tracking. Biomaterials. 2010;31:2425–2434.
  • Chen M-C, Ling M-H, Lai K-Y, et al. Chitosan microneedle patches for sustained transdermal delivery of macromolecules. Biomacromolecules. 2012;13:4022–4031.
  • Jung HS, Kong WH, Sung DK, et al. Nanographene oxide-hyaluronic acid conjugate for photothermal ablation therapy of skin cancer. ACS Nano. 2014;8:260–268.
  • Kong M, Park H, Feng C, et al. Construction of hyaluronic acid noisome as functional transdermal nanocarrier for tumor therapy. Carbohydr Polym. 2013;94:634–641.
  • Liu S, JIN M-N, QUAN Y-S, et al. The development and characteristics of novel microneedle arrays fabricated from hyaluronic acid, and their application in the transdermal delivery of insulin. J Control Release. 2012;161:933–941.
  • Salatin S, Jelvehgari M, Maleki-Dizaj S, et al. A sight on protein-based nanoparticles as drug/gene delivery systems. Ther Deliv. 2015;6:1017–1029.
  • Lindgren M, Hällbrink M, Prochiantz A, et al. Cell-penetrating peptides. Trends Pharmacol Sci. 2000;21:99–103.
  • Kurrikoff K, Gestin M, Langel Ü. Recent in vivo advances in cell-penetrating peptide-assisted drug delivery. Expert Opin Drug Deliv. 2016;13:373–387.
  • Madani F, Lindberg S, Langel Ü, et al. Mechanisms of cellular uptake of cell-penetrating peptides. J Biophys. 2011;2011:414729.
  • Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26:1261–1268.
  • Rothbard JB, Garlington S, Lin Q, et al. Conjugation of arginine oligomers to cyclosporin a facilitates topical delivery and inhibition of inflammation. Nat Med. 2000;6:1253–1257.
  • Park J, Ryu J, Jin LH, et al. 9-polylysine protein transduction domain: enhanced penetration efficiency of superoxide dismutase into mammalian cells and skin. Mol Cells 2002;13:202–208.
  • Lim JM, Chang MY, Park SG, et al. Penetration enhancement in mouse skin and lipolysis in adipocytes by TAT-GKH, a new cosmetic ingredient. J Cosmet Sci. 2003;54:483–492.
  • Wender PA, Rothbard JB, Jessop TC, et al. Oligocarbamate molecular transporters: design, synthesis, and biological evaluation of a new class of transporters for drug delivery. J Am Chem Soc. 2002;124:13382–13383.
  • Cohen-Avrahami M, Libster D, Aserin A, et al. Penetratin-induced transdermal delivery from H II mesophases of sodium diclofenac. J Control Release. 2012;159:419–428.
  • Schutze-Redelmeier M-PM, Kong S, Bally MB, et al. Antennapedia transduction sequence promotes anti tumour immunity to epicutaneously administered CTL epitopes. Vaccine. 2004;22:1985–1991.
  • Torchilin VP. Cell penetrating peptide‐modified pharmaceutical nanocarriers for intracellular drug and gene delivery. Pept Sci. 2008;90:604–610.
  • Eguchi A, Meade BR, Chang Y-C, et al. Efficient siRNA delivery into primary cells by a peptide transduction domain–dsRNA binding domain fusion protein. Nat Biotechnol. 2009;27:567–571.
  • Petrilli R, Eloy J, Praça F, et al. Liquid crystalline nanodispersions functionalized with cell-penetrating peptides for topical delivery of short-interfering RNAs: a proposal for silencing a pro-inflammatory cytokine in cutaneous diseases. J Biomed Nanotechnol. 2016;12:1063–1075.
  • Pepe D, Carvalho VF, Mccall M, et al. Transportan in nanocarriers improves skin localization and antitumor activity of paclitaxel. Int J Nanomed. 2016;11:2009.
  • Chen X, Liu S, Rao P, et al. Topical application of superoxide dismutase mediated by HIV-TAT peptide attenuates UVB-induced damages in human skin. Eur J Pharmaceut Biopharmaceut. 2016;107:286–294.
  • Kang MJ, Eum JY, Jeong MS, et al. Facilitated skin permeation of oregonin by elastic liposomal formulations and suppression of atopic dermatitis in NC/Nga mice. Biol Pharm Bull. 2010;33:100–106.
  • Shah PP, Desai PR, Channer D, et al. Enhanced skin permeation using polyarginine modified nanostructured lipid carriers. J Control Release 2012;161:735–745.
  • Shah PP, Desai PR, Singh M. Effect of oleic acid modified polymeric bilayered nanoparticles on percutaneous delivery of spantide II and ketoprofen. J Control Release 2012;158:336–345.
  • Patra S, Roy E, Madhuri R, et al. The next generation cell-penetrating peptide and carbon dot conjugated nano-liposome for transdermal delivery of curcumin. Biomater Sci. 2016;4:418–429.
  • B Lopes L, FM Carvalho V, P de Lemos D. Potential of peptide-based enhancers for transdermal delivery. Curr Pharm Des. 2015;21:2814–2822.
  • Cohen-Avrahami M, Libster D, Aserin A, et al. Sodium diclofenac and cell-penetrating peptides embedded in HII mesophases: physical characterization and delivery. J Phys Chem B. 2011;115:10189–10197.
  • Menegatti S, Zakrewsky M, Kumar S, et al. De novo design of skin‐penetrating peptides for enhanced transdermal delivery of peptide drugs. Adv Healthc Mater. 2016;5:602–609.
  • Vij M, Natarajan P, Pattnaik BR, et al. Non-invasive topical delivery of plasmid DNA to the skin using a peptide carrier. J Control Release. 2016;222:159–168.
  • Desai PR, Shah PP, Patlolla RR, et al. Dermal microdialysis technique to evaluate the trafficking of surface-modified lipid nanoparticles upon topical application. Pharm Res. 2012;29:2587–2600.
  • Ohtake K, Maeno T, Ueda H, et al. Poly-L-arginine enhances paracellular permeability via serine/threonine phosphorylation of ZO-1 and tyrosine dephosphorylation of occludin in rabbit nasal epithelium. Pharm Res. 2003;20:1838–1845.
  • Uchida T, Kanazawa T, Kawai M, et al. Therapeutic effects on atopic dermatitis by anti-RelA short interfering RNA combined with functional peptides Tat and AT1002. J Pharmacol Exp Ther. 2011;338:443–450.
  • Shi N-Q, Qi X-R, Xiang B, et al. A survey on “Trojan Horse” peptides: opportunities, issues and controlled entry to “Troy”. J Control Release. 2014;194:53–70.
  • Sachdeva MS, Patlolla R. Nanoparticle formulations for skin delivery. Google Patents. 2014.
  • Bolhassani A, Jafarzade BS, Mardani G. In vitro and in vivo delivery of therapeutic proteins using cell penetrating peptides. Peptides. 2017;87:50–63.
  • Mizrahy S, Peer D. Polysaccharides as building blocks for nanotherapeutics. Chem Soc Rev. 2012;41:2623–2640.
  • Lemarchand C, Gref R, Couvreur P. Polysaccharide-decorated nanoparticles. Eur J Pharm Biopharm. 2004;58:327–341.
  • Rinaudo M. Main properties and current applications of some polysaccharides as biomaterials. Polym Int. 2008;57:397–430.
  • Liu Z, Jiao Y, Wang Y, et al. Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev. 2008;60:1650–1662.
  • Janes K, Calvo P, Alonso M. Polysaccharide colloidal particles as delivery systems for macromolecules. Adv Drug Deliv Rev 2001;47:83–97.
  • He W, Guo X, Xiao L, et al. Study on the mechanisms of chitosan and its derivatives used as transdermal penetration enhancers. Int J Pharmaceut. 2009;382:234–243.
  • Kumar MR, Muzzarelli RA, Muzzarelli C, et al. Chitosan chemistry and pharmaceutical perspectives. Chem Rev. 2004;104:6017–6084.
  • Bernkop-Schnürch A, Dünnhaupt S. Chitosan-based drug delivery systems. Eur J Pharm Biopharm. 2012;81:463–469.
  • Zhou J, Romero G, Rojas E, et al. Layer by layer chitosan/alginate coatings on poly (lactide-co-glycolide) nanoparticles for antifouling protection and folic acid binding to achieve selective cell targeting. J Colloid Interface Sci. 2010;345:241–247.
  • Berger J, Reist M, Mayer JM, et al. Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur J Pharm Biopharm. 2004;57:35–52.
  • Kim J-H, Kim Y-S, Park K, et al. Self-assembled glycol chitosan nanoparticles for the sustained and prolonged delivery of antiangiogenic small peptide drugs in cancer therapy. Biomaterials. 2008;29:1920–1930.
  • Li L, Zhang Y, Han S, et al. Penetration enhancement of lidocaine hydrochlorid by a novel chitosan coated elastic liposome for transdermal drug delivery. J Biomed Nanotechnol. 2011;7:704–713.
  • Özcan İ, Azizoğlu E, Şenyiğit T, et al. Comparison of PLGA and lecithin/chitosan nanoparticles for dermal targeting of betamethasone valerate. J Drug Target. 2013;21:542–550.
  • He W, Guo X, Zhang M. Transdermal permeation enhancement of N-trimethyl chitosan for testosterone. Int J Pharmaceut. 2008;356:82–87.
  • Ahmed TA, Khalid M. Development of alginate-reinforced chitosan nanoparticles utilizing W/O nanoemulsification/internal crosslinking technique for transdermal delivery of rabeprazole. Life Sci. 2014;110:35–43.
  • Özbaş-Turan S, Akbuğa J. Plasmid DNA-loaded chitosan/TPP nanoparticles for topical gene delivery. Drug Deliv. 2011;18:215–222.
  • Lv H-X, Zhang Z-H, Wang X-P, et al. A biomimetic chitosan derivates: preparation, characterization and transdermal enhancement studies of N-arginine chitosan. Molecules. 2011;16:6778–6790.
  • Shin D-W, Shim J-H, Kim Y-K, et al. Chitosan Increases α6 Integrin high/CD71 high Human Keratinocyte Transit-Amplifying Cell Population. Biomol Ther. 2010;18:280–285.
  • Bal SM, Slütter B, Jiskoot W, et al. Small is beautiful: N-trimethyl chitosan–ovalbumin conjugates for microneedle-based transcutaneous immunisation. Vaccine. 2011;29:4025–4032.
  • Hirobe S, Otsuka R, Iioka H, et al. Clinical study of a retinoic acid-loaded microneedle patch for seborrheic keratosis or senile lentigo. Life Sci. 2017;168:24–27.
  • Arya J, Henry S, Kalluri H, et al. Tolerability, usability and acceptability of dissolving microneedle patch administration in human subjects. Biomaterials. 2017;128:1–7.
  • Chu LY, Prausnitz MR. Separable arrowhead microneedles. J Control Release. 2011;149:242–249.
  • Ito Y, Hagiwara E, Saeki A, et al. Feasibility of microneedles for percutaneous absorption of insulin. Eur J Pharmaceut Sci. 2006;29:82–88.
  • Park J-H, Allen MG, Prausnitz MR. Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery. J Control Release. 2005;104:51–66.
  • Li J, Liu B, Zhou Y, et al. Fabrication of a Ti porous microneedle array by metal injection molding for transdermal drug delivery. PLoS One. 2017;12:e0172043.
  • Lee JW, Park J-H, Prausnitz MR. Dissolving microneedles for transdermal drug delivery. Biomaterials. 2008;29:2113–2124.
  • Sachdeva M, Shah P. Surface modified multilayered nanostructures for dermal delivery. Google Patents. 2014.
  • Sung HW, Tu H. Pharmaceutical composition of nanoparticles. Google Patents. Citing Patent: US8663599 B1. 2013.
  • Sung HW, Chen MC, Lee PW, et al. Nanoparticles for protein/peptide delivery and delivery means thereof. Google Patents. Citing Patent: US8137697 B1. 2011.
  • Wu CJ, Huang HN, Chen CL, et al. Chitosan vehicle and method for making same. Google Patents. Citing Patent: US20100086613 A1. 2010.
  • Liao Y-H, Jones SA, Forbes B, et al. Hyaluronan: pharmaceutical characterization and drug delivery. Drug Deliv. 2005;12:327–342.
  • Day AJ, Carol A. Hyaluronan cross-linking: a protective mechanism in inflammation? Trends Immunol. 2005;26:637–643.
  • Noble PW, Lake F, Henson P, et al. Hyaluronate activation of CD44 induces insulin-like growth factor-1 expression by a tumor necrosis factor-alpha-dependent mechanism in murine macrophages. J Clin Invest. 1993;91:2368.
  • Bulpitt P, Aeschlimann D. New strategy for chemical modification of hyaluronic acid: preparation of functionalized derivatives and their use in the formation of novel biocompatible hydrogels. J Biomed Mater Res. 1999;47:152–169.
  • Tian X, Azpurua J, Hine C, et al. High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat. Nature. 2013;499:346–349.
  • Rao NV, Yoon HY, Han HS, et al. Recent developments in hyaluronic acid-based nanomedicine for targeted cancer treatment. Expert Opin Drug Deliv. 2016;13:239–252.
  • Jin Y-J, Termsarasab U, Ko S-H, et al. Hyaluronic acid derivative-based self-assembled nanoparticles for the treatment of melanoma. Pharm Res. 2012;29:3443–3454.
  • Shen H, Shi S, Zhang Z, et al. Coating solid lipid nanoparticles with hyaluronic acid enhances antitumor activity against melanoma stem-like cells. Theranostics. 2015;5:755.
  • Kong M, Hou L, Wang J, et al. Enhanced transdermal lymphatic drug delivery of hyaluronic acid modified transfersomes for tumor metastasis therapy. Chem Commun. 2015;51:1453–1456.
  • Lee P, Tran K, Chang W, et al. Influence of chondroitin sulfate and hyaluronic acid presence in nanofibers and its alignment on the bone marrow stromal cells: cartilage regeneration. J Biomed Nanotechnol. 2014;10:1469–1479.
  • Šmejkalová D, Muthný T, Nešporová K, et al. Hyaluronan polymeric micelles for topical drug delivery. Carbohydr Polymers. 2017;156:86–96.
  • Lee SG, Jeong JH, Lee KM, et al. Nanostructured lipid carrier-loaded hyaluronic acid microneedles for controlled dermal delivery of a lipophilic molecule. Int J Nanomed 2014;9:289.
  • Katsumi H, Liu S, Tanaka Y, et al. Development of a novel self‐dissolving microneedle array of alendronate, a nitrogen‐containing bisphosphonate: Evaluation of transdermal absorption, safety, and pharmacological effects after application in rats. J Pharmaceut Sci. 2012;101:3230–3238.
  • Witting M, Boreham A, Brodwolf R, et al. Interactions of hyaluronic acid with the skin and implications for the dermal delivery of biomacromolecules. Mol Pharm. 2015;12:1391–1401.
  • Yang J-A, Kim E-S, Kwon JH, et al. Transdermal delivery of hyaluronic acid–human growth hormone conjugate. Biomaterials. 2012;33:5947–5954.
  • Brown M, Jones SA. Hyaluronic acid: a unique topical vehicle for the localized delivery of drugs to the skin. J Eur Acad Dermatol Venerol. 2005;19:308–318.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.