1,167
Views
21
CrossRef citations to date
0
Altmetric
Review Article

Lysosomal targeting strategies for design and delivery of bioactive for therapeutic interventions

, , &
Pages 208-221 | Received 15 Jan 2017, Accepted 22 Aug 2017, Published online: 15 Sep 2017

References

  • Luzio JP, Pryor PR, Bright NA. Lysosomes: fusion and function. Nat Rev Mol Cell Biol. 2007;8:622–632.
  • Luzio JP, Parkinson MJ, Gray S, et al. The delivery of endocytosed cargo to lysosomes. Biochem Soc Trans. 2009;37:1019.
  • Xu H, Ren D. Lysosomal physiology. Annu Rev Physiol. 2015;77:57–80.
  • Grant BD, Donaldson JG. Pathways and mechanisms of endocytic recycling. Nat Rev Mol Cell Biol. 2009;10:597–608.
  • Goldenring JR. Recycling endosomes. Curr Opin Cell Biol. 2015;35:117–122.
  • Česen MH, Pegan K, Špes A, et al. Lysosomal pathways to cell death and their therapeutic applications. Exp Cell Res. 2012;318:1245–1251.
  • Sakhrani NM, Padh H. Organelle targeting: third level of drug targeting. Drug Des Devel Ther. 2013;7:585–599.
  • Brooks DA. The endosomal network. Int J Clin Pharmacol Ther. 2009;47 Suppl 1:S9–S17.
  • Champion JA, Walker A, Mitragotri S. Role of particle size in phagocytosis of polymeric microspheres. Pharm Res. 2008;25:1815–1821.
  • Doherty GJ, Mcmahon HT. Mechanisms of endocytosis. Annu Rev Biochem. 2009;78:857–902.
  • Canton I, Battaglia G. Endocytosis at the nanoscale. Chem Soc Rev. 2012;41:2718–2739.
  • Damm EM, Pelkmans L, Kartenbeck J, et al. Clathrin- and caveolin-1-independent endocytosis: entry. J Cell Biol. 2005;168:477–488.
  • Tuma P, Hubbard AL. Transcytosis: crossing cellular barriers. Physiol Rev. 2003;83:871–932.
  • Rojas R, Apodaca G. Immunoglobulin transport across polarized epithelial cells. Nat Rev Mol Cell Biol. 2002;3:944–955.
  • Shang L, Nienhaus K, Nienhaus GU. Engineered nanoparticles interacting with cells: size matters. J Nanobiotechnol. 2014;12:5.
  • Rothberg KG, Heuser JE, Donzell WC, et al. Caveolin, a protein component of caveolae membrane coats. Cell. 1992;68:673–682.
  • Anderson RG. The caveolae membrane system. Annu Rev Biochem. 1998;67:199–225.
  • Kurzchalia TV, Parton RG. Membrane microdomains and caveolae. Curr Opin Cell Biol. 1999;11:424–431.
  • Chithrani BD, Chan WC. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 2007;7:1542–1550.
  • Decuzzi P, Ferrari M. The receptor-mediated endocytosis of nonspherical particles. Biophys J. 2008;94:3790–3797.
  • Desjardins M. Biogenesis of phagolysosomes: the 'kiss and run' hypothesis. Trends Cell Biol. 1995;5:183–186.
  • Henkel AW, Kang G, Kornhuber J. A common molecular machinery for exocytosis and the ‘kiss-and-run’mechanism in chromaffin cells is controlled by phosphorylation. J Cell Sci. 2001;114:4613–4620.
  • Duclos S, Diez R, Garin J, et al. Rab5 regulates the kiss and run fusion between phagosomes and endosomes and the acquisition of phagosome leishmanicidal properties in RAW 264.7 macrophages. J Cell Sci. 2000;113:3531–3541.
  • Trouillon RL, Ewing AG. Actin controls the vesicular fraction of dopamine released during extended kiss and run exocytosis. ACS Chem Biol. 2014;9:812–820.
  • Zhou Z, Misler S, Chow RH. Rapid fluctuations in transmitter release from single vesicles in bovine adrenal chromaffin cells. Biophys J. 1996;70:1543.
  • Boya P. Lysosomal function and dysfunction: mechanism and disease. Antioxid Redox Signal. 2012;17:766–774.
  • Kelley VA, Schorey JS. Mycobacterium's arrest of phagosome maturation in macrophages requires Rab5 activity and accessibility to iron. Mol Biol Cell. 2003;14:3366–3377.
  • Jiang P, Mizushima N. Autophagy and human diseases. Cell Res. 2014;24:69–79.
  • Levine B. Cell biology: autophagy and cancer. Nature. 2007;446:745–747.
  • Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature. 2011;469:323–335.
  • Choi AM, Ryter SW, Levine B. Autophagy in human health and disease. N Engl J Med. 2013;368:651–662.
  • Chittaranjan S, Bortnik S, Dragowska WH, et al. Autophagy inhibition augments the anticancer effects of epirubicin treatment in anthracycline-sensitive and -resistant triple-negative breast cancer. Clin Cancer Res. 2014;20:3159–3173.
  • Stern ST, Adiseshaiah PP, Crist RM. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part Fibre Toxicol. 2012;9:20.
  • Cohignac V, Landry MJ, Boczkowski J, et al. Autophagy as a possible underlying mechanism of nanomaterial toxicity. Nanomaterials. 2014;4:548–582.
  • Li C, Liu H, Sun Y, et al. PAMAM nanoparticles promote acute lung injury by inducing autophagic cell death through the Akt-TSC2-mTOR signaling pathway. J Mol Cell Biol. 2009;1:37–45.
  • Savitskaya MA, Onishchenko GE. Mechanisms of Apoptosis. Biochem Mosc. 2015;80:1393–1417.
  • Brunk UT, Neuzil J, Eaton JW. Lysosomal involvement in apoptosis. Redox Rep. 2001;6:91–97.
  • Repnik U, Stoka V, Turk V, et al. Lysosomes and lysosomal cathepsins in cell death. Biochim Biophys Acta. 2012;1824:22–33.
  • Pupyshev AB. Lysosomal membrane permeabilization as apoptogenic factor. Tsitologiia. 2011;53:313–324.
  • Repnik U, Hafner Cesen M, Turk B. Lysosomal membrane permeabilization in cell death: concepts and challenges. Mitochondrion. 2014;19 Pt A:49–57.
  • Groth-Pedersen L, Jäättelä M. Combating apoptosis and multidrug resistant cancers by targeting lysosomes. Cancer Lett. 2013;332:265–274.
  • Ebrahimi-Fakhari D, Wahlster L, Hoffmann GF, et al. Emerging role of autophagy in pediatric neurodegenerative and neurometabolic diseases. Pediatr Res. 2014;75:217–226.
  • Taylor KM, Meyers E, Phipps M, et al. Dysregulation of multiple facets of glycogen metabolism in a murine model of Pompe disease. PLoS One. 2013;8:e56181.
  • Barrias C, Lamghari M, Granja P, et al. Biological evaluation of calcium alginate microspheres as a vehicle for the localized delivery of a therapeutic enzyme. J Biomed Mater Res. 2005;74:545–552.
  • Gregoriadis G, Putman D, Louis L, et al. Comparative effect and fate of non-entrapped and liposome-entrapped neuraminidase injected into rats. Biochem J. 1974;140:323–330.
  • Giannotti MI, Esteban O, Oliva M, et al. pH-responsive polysaccharide-based polyelectrolyte complexes as nanocarriers for lysosomal delivery of therapeutic proteins. Biomacromolecules. 2011;12:2524–2533.
  • Garnacho C, Dhami R, Simone E, et al. Delivery of acid sphingomyelinase in normal and niemann-pick disease mice using intercellular adhesion molecule-1-targeted polymer nanocarriers. J Pharmacol Exp Ther. 2008;325:400–408.
  • Ansari NH, He Q, Cook JD, et al. Delivery of liposome-sequestered hydrophobic proteins to lysosomes of normal and Batten disease cells. J Neurosci Res. 1997;47:341–347.
  • Cohen CM, Weissmann G, Hoffstein S, et al. Introduction of purified hexosaminidase A into Tay-Sachs leukocytes by means of immunoglobulin-coated liposomes. Biochemistry. 1976;15:452–460.
  • Weissmann G, Bloomgarden D, Kaplan R, et al. A general method for the introduction of enzymes, by means of immunoglobulin-coated liposomes, into lysosomes of deficient cells. Proc Natl Acad Sci USA. 1975;72:88–92.
  • Mumtaz S, Bachhawat BK. Enhanced intracellular stability and efficacy of PEG modified dextranase in the treatment of a model storage disorder. Biochim Biophys Acta. 1994;1199:175–182.
  • Ihler GM, Glew RH, Schnure FW. Enzyme loading of erythrocytes. Proc Natl Acad Sci USA. 1973;70:2663–2666.
  • Updike S, Prieve C, Magnuson J. Immobilization in hypoallergenic gel, a method of protecting enzymes from proteolysis and antibody complexing. Birth Defects Orig Artic Ser. 1973;9:77–80.
  • Gao W, Cao W, Zhang H, et al. Targeting lysosomal membrane permeabilization to induce and image apoptosis in cancer cells by multifunctional Au–ZnO hybrid nanoparticles. Chem Commun. 2014;50:8117–8120.
  • Domenech M, Marrero-Berrios I, Torres-Lugo M, et al. Lysosomal membrane permeabilization by targeted magnetic nanoparticles in alternating magnetic fields. ACS Nano. 2013;7:5091–5101.
  • Owen SC, Patel N, Logie J, et al. Targeting HER2+ breast cancer cells: lysosomal accumulation of anti-HER2 antibodies is influenced by antibody binding site and conjugation to polymeric nanoparticles. J Control Release. 2013;172:395–404.
  • Yang Z, Zhang Y, Yang Y, et al. Pharmacological and toxicological target organelles and safe use of single-walled carbon nanotubes as drug carriers in treating Alzheimer disease. Nanomedicine. 2010;6:427–441.
  • Song Q, Huang M, Yao L, et al. Lipoprotein-based nanoparticles rescue the memory loss of mice with Alzheimer's disease by accelerating the clearance of amyloid-beta. ACS Nano. 2014;8:2345–2359.
  • Batrakova EV, Li S, Reynolds AD, et al. A macrophage-nanozyme delivery system for Parkinson's disease. Bioconjugate Chem. 2007;18:1498–1506.
  • Hasadsri L, Kreuter J, Hattori H, et al. Functional protein delivery into neurons using polymeric nanoparticles. J Biol Chem. 2009;284:6972–6981.
  • Brynskikh AM, Zhao Y, Mosley RL, et al. Macrophage delivery of therapeutic nanozymes in a murine model of Parkinson's disease. Nanomedicine (Lond). 2010;5:379–396.
  • Ghadially FN. The aurosome. J Rheumatol Suppl. 1979;5:45–50.
  • Parenti G, Andria G, Ballabio A. Lysosomal storage diseases: from pathophysiology to therapy. Annu Rev Med. 2015;66:471–486.
  • Lara-Aguilar R, Juárez-Vázquez C, Medina-Lozano C. Therapy of lysosomal storage diseases: update and perspectives. Rev Invest Clin. 2010;63:651–658.
  • Ortolano S, Vieitez I, Navarro C, et al. Treatment of lysosomal storage diseases: recent patents and future strategies. Recent Pat. EMI. 2014;8:9–25.
  • Solomon M, Muro S. Lysosomal enzyme replacement therapies: Historical development, clinical outcomes, and future perspectives. Adv Drug Deliv Rev. Forthcoming. [cited 2017 May 11]. doi: 10.1016/j.addr.2017.05.004.
  • Gregoriadis G, Ryman BE. Lysosomal localization of fructofuranosidase-containing liposomes injected into rats. Biochem J. 1972;129:123–133.
  • Thekkedath R, Koshkaryev A, Torchilin VP. Lysosome-targeted octadecyl-rhodamine B-liposomes enhance lysosomal accumulation of glucocerebrosidase in Gaucher's cells in vitro. Nanomedicine (Lond). 2013;8:1055–1065.
  • Muro S. New biotechnological and nanomedicine strategies for treatment of lysosomal storage disorders. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2:189–204.
  • Cabrera I, Abasolo I, Corchero JL, et al. Alpha-galactosidase-A loaded-nanoliposomes with enhanced enzymatic activity and intracellular penetration. Adv Healthcare Mater. 2016;5:829–840.
  • Hamill KM, Wexselblatt E, Tong W, et al. Delivery of cargo to lysosomes using GNeosomes. Methods Mol Biol. 2017;1594:151–163.
  • Dekiwadia CD, Lawrie AC, Fecondo JV. Peptide-mediated cell penetration and targeted delivery of gold nanoparticles into lysosomes. J Pept Sci. 2012;18:527–534.
  • Muro S, Schuchman EH, Muzykantov VR. Lysosomal enzyme delivery by ICAM-1-targeted nanocarriers bypassing glycosylation- and clathrin-dependent endocytosis. Mol Ther. 2006;13:135–141.
  • Hsu J, Hoenicka J, Muro S. Targeting, endocytosis, and lysosomal delivery of active enzymes to model human neurons by ICAM-1-targeted nanocarriers. Pharm Res. 2015;32:1264–1278.
  • Rappaport J, Garnacho C, Muro S. Clathrin-mediated endocytosis is impaired in type A-B Niemann-Pick disease model cells and can be restored by ICAM-1-mediated enzyme replacement. Mol Pharm. 2014;11:2887–2895.
  • Ghaffarian R, Roki N, Abouzeid A, et al. Intra- and trans-cellular delivery of enzymes by direct conjugation with non-multivalent anti-ICAM molecules. J Control Release. 2016;238:221–230.
  • Ruiz De Garibay AP, Delgado D, Del Pozo-Rodriguez A, et al. Multicomponent nanoparticles as nonviral vectors for the treatment of Fabry disease by gene therapy. Drug Des Devel Ther. 2012;6:303–310.
  • Giannotti MI, Abasolo I, Oliva M, et al. Highly versatile polyelectrolyte complexes for improving the enzyme replacement therapy of lysosomal storage disorders. ACS Appl Mater Interfaces. 2016;8:25741–25752.
  • Tancini B, Tosi G, Bortot B, et al. Use of polylactide-co-glycolide-nanoparticles for lysosomal delivery of a therapeutic enzyme in glycogenosis type II fibroblasts. J Nanosci Nanotechnol. 2015;15:2657–2666.
  • Rappaport J, Manthe RL, Solomon M, et al. A comparative study on the alterations of endocytic pathways in multiple lysosomal storage disorders. Mol Pharm. 2016;13:357–368.
  • Fehrenbacher N, Jaattela M. Lysosomes as targets for cancer therapy. Cancer Res. 2005;65:2993–2995.
  • Piao S, Amaravadi RK. Targeting the lysosome in cancer. Ann N Y Acad Sci. 2016;1371:45–54.
  • Firestone RA, Pisano JM, Bonney RJ. Lysosomotropic agents. 1. Synthesis and cytotoxic action of lysosomotropic detergents. J Med Chem. 1979;22:1130–1133.
  • Bhat M, Hickey AJ. Effect of chloroquine on phagolysosomal fusion in cultured guinea pig alveolar macrophages: implications in drug delivery. AAPS PharmSci. 2000;2:12–18.
  • Ndolo RA, Luan Y, Duan S, et al. Lysosomotropic properties of weakly basic anticancer agents promote cancer cell selectivity in vitro. PLoS One. 2012;7:e49366.
  • Ostenfeld MS, Høyer-Hansen M, Bastholm L, et al. Anti-cancer agent siramesine is a lysosomotropic detergent that induces cytoprotective autophagosome accumulation. Autophagy. 2008;4:487–499.
  • Baltazar GC, Guha S, Lu W, et al. 2012. Acidic nanoparticles are trafficked to lysosomes and restore an acidic lysosomal pH and degradative function to compromised ARPE-19 cells. PLoS One. 2012;7:e49635.
  • Maniganda S, Sankar V, Nair JB, et al. A lysosome-targeted drug delivery system based on sorbitol backbone towards efficient cancer therapy. Org Biomol Chem. 2014;12:6564–6569.
  • Panzarini E, Inguscio V, Tenuzzo BA, et al. Nanomaterials and autophagy: new insights in cancer treatment. Cancers (Basel). 2013;5:296–319.
  • Goodman VL, Brewer GJ, Merajver SD. Copper deficiency as an anti-cancer strategy. Endocr Relat Cancer. 2004;11:255–263.
  • Hatcher HC, Singh RN, Torti FM, et al. Synthetic and natural iron chelators: therapeutic potential and clinical use. Future Med Chem. 2009;1:1643–1670.
  • Fatfat M, Merhi RA, Rahal O, et al. Copper chelation selectively kills colon cancer cells through redox cycling and generation of reactive oxygen species. BMC Cancer. 2014;14:527.
  • Merlot AM, Sahni S, Lane DJ, et al. Potentiating the cellular targeting and anti-tumor activity of Dp44mT via binding to human serum albumin: two saturable mechanisms of Dp44mT uptake by cells. Oncotarget. 2015;6:10374–10398.
  • Nair JB, Mohapatra S, Ghosh S, et al. Novel lysosome targeted molecular transporter built on a guanidinium-poly-(propylene imine) hybrid dendron for efficient delivery of doxorubicin into cancer cells. Chem Commun (Camb). 2015;51:2403–2406.
  • Zhang L, Sheng R, Qin Z. The lysosome and neurodegenerative diseases. Acta Biochim Biophys Sin (Shanghai). 2009;41:437–445.
  • Xue X, Wang LR, Sato Y, et al. Single-walled carbon nanotubes alleviate autophagic/lysosomal defects in primary glia from a mouse model of Alzheimer's disease. Nano Lett. 2014;14:5110–5117.
  • Kiriyama Y, Nochi H. The function of autophagy in neurodegenerative diseases. Int J Mol Sci. 2015;16:26797–26812.
  • Hartig W, Kacza J, Paulke BR, et al. In vivo labelling of hippocampal beta-amyloid in triple-transgenic mice with a fluorescent acetylcholinesterase inhibitor released from nanoparticles. Eur J Neurosci. 2010;31:99–109.
  • Underhill DM. Phagosome maturation: steady as she goes. Immunity. 2005;23:343–344.
  • Zabirnyk O, Yezhelyev M, Seleverstov O. Nanoparticles as a novel class of autophagy activators. Autophagy. 2007;3:278–281.
  • Bohgaki T, Atsumi T. Autophagy in autoimmune disease. Nihon Rinsho Meneki Gakkai Kaishi. 2014;37:125–132.
  • Wang F, Muller S. Manipulating autophagic processes in autoimmune diseases: a special focus on modulating chaperone-mediated autophagy, an emerging therapeutic target. Front Immunol. 2015;6:252.
  • Yang Z, Goronzy JJ, Weyand CM. Autophagy in autoimmune disease. J Mol Med. 2015;93:707–717.
  • Wang L, Law HK. The role of autophagy in lupus nephritis. Int J Mol Sci. 2015;16:25154–25167.
  • Varkouhi AK, Scholte M, Storm G, et al. Endosomal escape pathways for delivery of biologicals. J Control Release. 2011;151:220–228.
  • El-Sayed A, Futaki S, Harashima H. Delivery of macro molecules using arginine-rich cell-penetrating peptides: ways to overcome endosomal entrapment. AAPS J. 2009;11:13–22.
  • Zhang Q, Gao H, He Q. Taming cell penetrating peptides: never too old to teach old dogs new tricks. Mol Pharm. 2015;12:3105–3118.
  • Sakurai Y, Hatakeyama H, Sato Y, et al. Endosomal escape and the knockdown efficiency of liposomal-siRNA by the fusogenic peptide shGALA. Biomaterials. 2011;32:5733–5742.
  • Nishimura Y, Takeda K, Ezawa R, et al. A display of pH-sensitive fusogenic GALA peptide facilitates endosomal escape from a bio-nanocapsule via an endocytic uptake pathway. J Nanobiotechnol. 2014;12:11.
  • Oliveira S, Van Rooy I, Kranenburg O, et al. Fusogenic peptides enhance endosomal escape improving siRNA-induced silencing of oncogenes. Int J Pharm. 2007;331:211–214.
  • Curiel DT, Wagner E, Cotten M, et al. High-efficiency gene transfer mediated by adenovirus coupled to DNA-polylysine complexes. Hum Gene Ther. 1992;3:147–154.
  • Fattal E, Nir S, Parente RA, et al. Pore-forming peptides induce rapid phospholipid flip-flop in membranes. Biochemistry. 1994;33:6721–6731.
  • Funhoff AM, Van Nostrum CF, Koning GA, et al. Endosomal escape of polymeric gene delivery complexes is not always enhanced by polymers buffering at low pH. Biomacromolecules. 2004;5:32–39.
  • Singh B, Maharjan S, Park TE, et al. Tuning the buffering capacity of polyethylenimine with glycerol molecules for efficient gene delivery: staying in or out of the endosomes. Macromol Biosci. 2015;15:622–635.
  • Mclaughlin S, Harary H. Phospholipid flip-flop and the distribution of surface charges in excitable membranes. Biophys J. 1974;14:200–208.
  • Xu Y, Szoka FC Jr., Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry. 1996;35:5616–5623.
  • Tachibana R, Futaki S, Harashima H, et al. pH-sensitive liposomes in nuclear targeting of macromolecules. Meth Enzymol. 2003;372:349–361.
  • Medina-Kauwe LK, Xie J, Hamm-Alvarez S. Intracellular trafficking of nonviral vectors. Gene Ther. 2005;12:1734–1751.
  • Nishiyama N, Arnida Jang WD, et al. Photochemical enhancement of transgene expression by polymeric micelles incorporating plasmid DNA and dendrimer-based photosensitizer. J Drug Target. 2006;14:413–424.
  • Jones RA, Cheung CY, Black FE, et al. Poly(2-alkylacrylic acid) polymers deliver molecules to the cytosol by pH-sensitive disruption of endosomal vesicles. Biochem J. 2003;372:65–75.
  • Kusonwiriyawong C, Van De Wetering P, Hubbell JA, et al. Evaluation of pH-dependent membrane-disruptive properties of poly(acrylic acid) derived polymers. Eur J Pharm Biopharm. 2003;56:237–246.
  • Dowdy SF. Overcoming cellular barriers for RNA therapeutics. Nat Biotechnol. 2017;35:222–229.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.