1,179
Views
87
CrossRef citations to date
0
Altmetric
Review Article

Advances in nano-delivery systems for doxorubicin: an updated insight

, , , , &
Pages 296-310 | Received 02 May 2017, Accepted 13 Sep 2017, Published online: 28 Sep 2017

References

  • Momparler RL, Karon M, Siegel SE, et al. Effect of adriamycin on DNA, RNA, and protein synthesis in cell-free systems and intact cells. Cancer Res. 1976;36:2891–2895.
  • Gudkov AV, Zelnick CR, Kazarov AR, et al. Isolation of genetic suppressor elements, inducing resistance to topoisomerase II-interactive cytotoxic drugs, from human topoisomerase II cDNA. Proc Natl Acad Sci USA. 1993;90:3231–3235.
  • Slingerland M, Guchelaar H-J, Gelderblom H. Liposomal drug formulations in cancer therapy: 15 years along the road. Drug Discov Today. 2012;17:160–166.
  • Waterhouse DN, Tardi PG, Mayer LD, et al. A comparison of liposomal formulations of doxorubicin with drug administered in free form: changing toxicity profiles. Drug Saf. 2001;24:903–920.
  • Pai VB, Nahata MC. Cardiotoxicity of chemotherapeutic agents: incidence, treatment and prevention. Drug Saf. 2000;22:263–302.
  • Cattel L, Ceruti M, Dosio F. From conventional to stealth liposomes: a new frontier in cancer chemotherapy. J Chemother. 2004;16:94–97.
  • Di Paolo A. Liposomal anticancer therapy: pharmacokinetic and clinical aspects. J Chemother. 2004;16:90–93.
  • Italia J, Bhatt D, Bhardwaj V, et al. PLGA nanoparticles for oral delivery of cyclosporine: nephrotoxicity and pharmacokinetic studies in comparison to Sandimmune Neoral®. J Control Release. 2007;119:197–206.
  • Tardi P, Boman N, Cullis P. Liposomal doxorubicin. J Drug Target. 1996;4:129–140.
  • Von Moos R, Thuerlimann BJ, Aapro M, et al. Pegylated liposomal doxorubicin-associated hand–foot syndrome: recommendations of an international panel of experts. Eur J Cancer. 2008;44:781–790.
  • Rapoport N. Combined cancer therapy by micellar-encapsulated drug and ultrasound. Int J Pharm. 2004;277:155–162.
  • Howard B, Gao Z, Lee S-W, et al. Ultrasound-enhanced chemotherapy of drug-resistant breast cancer tumors by micellar-encapsulated paclitaxel. Am J Drug Deliv. 2006;4:97–104.
  • Rapoport NY, Gao Z, Kamaev P, et al. 2006. Ultrasound‐enhanced localized chemotherapy of drug‐sensitive and multidrug resistant tumorsed. AIP Conference Proceedings, AIP, 481–485.
  • Rapoport N. Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci. 2007;32:962–990.
  • Adamo V, Lorusso V, Rossello R, et al. Pegylated liposomal doxorubicin and gemcitabine in the front-line treatment of recurrent/metastatic breast cancer: a multicentre phase II study. Br J Cancer. 2008;98:1916–1921.
  • Bromberg L. Polymeric micelles in oral chemotherapy. J Control Release. 2008;128:99–112.
  • Patil RR, Guhagarkar SA, Devarajan PV. Engineered nanocarriers of doxorubicin: a current update. Crit Rev Ther Drug Carrier Syst. 2008;25:1–61.
  • Pillai G, Ceballos-Coronel ML. Science and technology of the emerging nanomedicines in cancer therapy: a primer for physicians and pharmacists. SAGE Open Med. 2013;1:1–17.doi: 10.1177/2050312113513759.
  • Park JW. Liposome-based drug delivery in breast cancer treatment. Breast Cancer Res. 2002;4:95.
  • Hilger R, Richly H, Grubert M, et al. Pharmacokinetics (PK) of a liposomal encapsulated fraction containing doxorubicin and of doxorubicin released from the liposomal capsule after intravenous infusion of Caelyx/Doxil. Int J Clin Pharmacol Therapeut. 2005;43:588.
  • Leonard R, Williams S, Tulpule A, et al. Improving the therapeutic index of anthracycline chemotherapy: Focus on liposomal doxorubicin (Myocet™). Breast. 2009;18:218–224.
  • Yarmolenko PS, Zhao Y, Landon C, et al. Comparative effects of thermosensitive doxorubicin-containing liposomes and hyperthermia in human and murine tumours. Int J Hypertherm. 2010;26:485–498.
  • Masood F. Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater Sci Eng C Mater Biol Appl. 2016;60:569–578.
  • Janes KA, Fresneau MP, Marazuela A, et al. Chitosan nanoparticles as delivery systems for doxorubicin. J Control Release. 2001;73:255–267.
  • Mitra S, Gaur U, Ghosh P, et al. Tumour targeted delivery of encapsulated dextran–doxorubicin conjugate using chitosan nanoparticles as carrier. J Control Release. 2001;74:317–323.
  • Son YJ, Jang J-S, Cho YW, et al. Biodistribution and anti-tumor efficacy of doxorubicin loaded glycol-chitosan nanoaggregates by EPR effect. J Control Release. 2003;91:135–145.
  • Zubareva A, Shcherbinina T, Varlamov VP, et al. Biodistribution of doxorubicin-loaded succinoyl chitosan nanoparticles in mice injected via intravenous or intranasal routes. Prog Chem Appl Chitin Derivat. 2014;19:145–154.
  • Park JH, Kwon S, Lee M, et al. Self-assembled nanoparticles based on glycol chitosan bearing hydrophobic moieties as carriers for doxorubicin: in vivo biodistribution and anti-tumor activity. Biomaterials. 2006;27:119–126.
  • Unsoy G, Khodadust R, Yalcin S, et al. Synthesis of doxorubicin loaded magnetic chitosan nanoparticles for pH responsive targeted drug delivery. Eur J Pharmaceut Sci. 2014;62:243–250.
  • Dave R, Patel R. Preparation and characterization of doxorubicin HCl loaded chitosan nanoparticles by w/o emulsion method. Int J Pharm Life Sci. 2013;4:2407–2413.
  • Il’ina A, Zubareva A, Kurek D, et al. Nanoparticles based on succinylchitosan with doxorubicin: preparation and properties. Nanotechnol Russia. 2012;7:85–92.
  • Songsurang K, Praphairaksit N, Siraleartmukul K, et al. Electrospray fabrication of doxorubicin-chitosan-tripolyphosphate nanoparticles for delivery of doxorubicin. Arch Pharm Res. 2011;34:583–592.
  • Yoon HY, Son S, Lee SJ, et al. Glycol chitosan nanoparticles as specialized cancer therapeutic vehicles: Sequential delivery of doxorubicin and Bcl-2 siRNA. Sci Rep. 2014;4:6878.
  • Yu JM, Li YJ, Qiu LY, et al. Polymeric nanoparticles of cholesterol‐modified glycol chitosan for doxorubicin delivery: preparation and in‐vitro and in‐vivo characterization. J Pharmacy Pharmacol. 2009;61:713–719.
  • Zhang J, Chen XG, Li YY, et al. Self-assembled nanoparticles based on hydrophobically modified chitosan as carriers for doxorubicin. Nanomedicine. 2007;3:258–265.
  • Yadav AK, Mishra P, Mishra AK, et al. Development and characterization of hyaluronic acid–anchored PLGA nanoparticulate carriers of doxorubicin. Nanomedicine. 2007;3:246–257.
  • Zhang J, Tao W, Chen Y, et al. Doxorubicin-loaded star-shaped copolymer PLGA-vitamin E TPGS nanoparticles for lung cancer therapy. J Mater Sci: Mater Med. 2015;26:1–12.
  • Betancourt T, Brown B, Brannon-Peppas L. Doxorubicin-loaded PLGA nanoparticles by nanoprecipitation: preparation, characterization and in vitro evaluation. Nanomedicine. 2007;2:219–232.
  • Nguyen HN, Hoang TMN, Mai TTT, et al. Enhanced cellular uptake and cytotoxicity of folate decorated doxorubicin loaded PLA-TPGS nanoparticles. Adv Nat Sci. 2015;6:025005.
  • Yu Y, Chen C-K, Law W-C, et al. Polylactide-graft-doxorubicin nanoparticles with precisely controlled drug loading for pH-triggered drug delivery. Biomacromolecules. 2014;15:524–532.
  • Tam YT, To KKW, Chow AHL. Fabrication of doxorubicin nanoparticles by controlled antisolvent precipitation for enhanced intracellular delivery. Coll Surf B: Biointerf. 2016;139:249–258.
  • Kamimura M, Furukawa T, Akiyama S-I, et al. Enhanced intracellular drug delivery of pH-sensitive doxorubicin/poly (ethylene glycol)-block-poly (4-vinylbenzylphosphonate) nanoparticles in multi-drug resistant human epidermoid KB carcinoma cells. Biomater Sci. 2013;1:361–367.
  • Diao Y-Y, Li H-Y, Fu Y-H, et al. Doxorubicin-loaded PEG-PCL copolymer micelles enhance cytotoxicity and intracellular accumulation of doxorubicin in adriamycin-resistant tumor cells. Int J Nanomed. 2011;6:955.
  • Yadav AK, Mishra P, Jain S, et al. Preparation and characterization of HA-PEG-PCL intelligent core-corona nanoparticles for delivery of doxorubicin. J Drug Target. 2008;16:464–478.
  • Gou M, Zheng X, Men K, et al. Poly (ε-caprolactone)/poly (ethylene glycol)/poly (ε-caprolactone) nanoparticles: preparation, characterization, and application in doxorubicin delivery. J Phys Chem B. 2009;113:12928–12933.
  • Yang SC, Ge HX, Hu Y, et al. Doxorubicin‐loaded poly (butylcyanoacrylate) nanoparticles produced by emulsifier‐free emulsion polymerization. J Appl Polym Sci. 2000;78:517–526.
  • Maksimenko O, Pavlov E, Toushov E, et al. Radiation sterilisation of doxorubicin bound to poly (butyl cyanoacrylate) nanoparticles. Int J Pharmaceut. 2008;356:325–332.
  • Ambruosi A, Yamamoto H, Kreuter J. Body distribution of polysorbate‐80 and doxorubicin-loaded [14C] poly (butyl cyanoacrylate) nanoparticles after iv administration in rats. J Drug Target. 2005;13:535–542.
  • Cabeza L, Ortiz R, Arias JL, et al. Enhanced antitumor activity of doxorubicin in breast cancer through the use of poly (butylcyanoacrylate) nanoparticles. Int J Nanomed. 2015;10:1291.
  • An T, Zhang C, Han X, et al. Hyaluronic acid-coated poly (β-amino) ester nanoparticles as carrier of doxorubicin for overcoming drug resistance in breast cancer cells. RSC Adv. 2016;6:38624–38636.
  • Wei W-H, Dong X-M, Liu C-G. In vitro investigation of self-assembled nanoparticles based on hyaluronic acid-deoxycholic acid conjugates for controlled release doxorubicin: effect of degree of substitution of deoxycholic acid. IJMS. 2015;16:7195–7209.
  • Wu J-L, Tian G-X, Yu W-J, et al. pH-responsive hyaluronic acid-based mixed micelles for the hepatoma-targeting delivery of doxorubicin. Int J Mol Sci. 2016;17:364.
  • Jin Y, Ma X, Feng S, et al. Hyaluronic acid modified tantalum oxide nanoparticles conjugating doxorubicin for targeted cancer theranostics. Bioconjugate Chem. 2015;26:2530–2541.
  • Li W, Yi X, Liu X, et al. Hyaluronic acid ion-pairing nanoparticles for targeted tumor therapy. J Control Release. 2016;225:170–182.
  • Wu J-L, Liu C-G, Wang X-L, et al. Preparation and characterization of nanoparticles based on histidine–hyaluronic acid conjugates as doxorubicin carriers. J Mater Sci: Mater Med. 2012;23:1921–1929.
  • Zhang J, Sun Y, Tian B, et al. Multifunctional mesoporous silica nanoparticles modified with tumor-shedable hyaluronic acid as carriers for doxorubicin. Coll Surf B: Biointerf. 2016;144:293–302.
  • Honary S, Jahanshahi M, Golbayani P, et al. Doxorubicin-loaded albumin nanoparticles: formulation and characterization. J Nanosci Nanotech. 2010;10:7752–7757.
  • Bae S, Ma K, Kim TH, et al. Doxorubicin-loaded human serum albumin nanoparticles surface-modified with TNF-related apoptosis-inducing ligand and transferrin for targeting multiple tumor types. Biomaterials. 2012;33:1536–1546.
  • Hao H, Ma Q, He F, et al. Doxorubicin and Fe3O4 loaded albumin nanoparticles with folic acid modified dextran surface for tumor diagnosis and therapy. J Mater Chem B. 2014;2:7978–7987.
  • Byeon HJ, Lee C, Lee S, et al. Doxorubicin-bound albumin nanoparticles containing a TRAIL protein for targeted treatment of colon cancer. Pharmaceut Res. 2016;33:615–626.
  • Sinha V, Singla A, Wadhawan S, et al. Chitosan microspheres as a potential carrier for drugs. Int J Pharmaceut. 2004;274:1–33.
  • Gan Q, Wang T. Chitosan nanoparticle as protein delivery carrier—systematic examination of fabrication conditions for efficient loading and release. Coll Surf B: Biointerf. 2007;59:24–34.
  • Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Coll Surf B: Biointerf. 2010;75:1–18.
  • Ahmed TA, Aljaeid BM. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Des Dev Ther. 2016;10:483.
  • Carrasquillo KG, Stanley AM, Aponte-Carro JC, et al. Non-aqueous encapsulation of excipient-stabilized spray-freeze dried BSA into poly (lactide-co-glycolide) microspheres results in release of native protein. J Control Release. 2001;76:199–208.
  • Danhier F, Ansorena E, Silva JM, et al. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012;161:505–522.
  • Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel). 2011;3:1377–1397.
  • Alsaheb RaA, Aladdin A, Othman NZ, et al. Recent applications of polylactic acid in pharmaceutical and medical industries. J Chem Pharm Res. 2015;7:51–63.
  • Hutanu D, Frishberg MD, Guo L, et al. Recent applications of polyethylene glycols (PEGs) and PEG derivatives. Modern Chem Appl. 2014;2:132.
  • Salgueiro A, Gamisans F, Espina M, et al. Cyclophosphamide-loaded nanospheres: analysis of the matrix structure by thermal and spectroscopic methods. J Microencapsulat. 2002;19:305–310.
  • Gerecht S, Burdick JA, Ferreira LS, et al. Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc Natl Acad Sci USA. 2007;104:11298–11303.
  • Peters T. Serum albumin. Adv Protein Chem. 1985;37:161–245.
  • Kratz F, Fichtner I, Beyer U, et al. Antitumour activity of acid labile transferrin and albumin doxorubicin conjugates in in vitro and in vivo human tumour xenograft models. Eur J Cancer. 1997;33:S175.
  • Vogel SM, Minshall RD, Pilipović M, et al. Albumin uptake and transcytosis in endothelial cells in vivo induced by albumin-binding protein. Am J Physiol-Lung Cell Mol Physiol. 2001;281:L1512–L1522.
  • Puri A, Loomis K, Smith B, et al. Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev Ther Drug Carrier Syst. 2009;26:523–580.
  • Porter CJ, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov. 2007;6:231–248.
  • Mussi SV, Silva RC, De Oliveira MC, et al. New approach to improve encapsulation and antitumor activity of doxorubicin loaded in solid lipid nanoparticles. Eur J Pharmaceut Sci. 2013;48:282–290.
  • Subedi RK, Kang KW, Choi H-K. Preparation and characterization of solid lipid nanoparticles loaded with doxorubicin. Eur J Pharmaceut Sci. 2009;37:508–513.
  • Zhang X, Sun X, Li J, et al. Lipid nanoemulsions loaded with doxorubicin-oleic acid ionic complex: characterization, in vitro and in vivo studies. Die Pharm. 2011;66:496–505.
  • Cao X, Luo J, Gong T, et al. Coencapsulated doxorubicin and bromotetrandrine lipid nanoemulsions in reversing multidrug resistance in breast cancer in vitro and in vivo. Mol Pharmaceut. 2014;12:274–286.
  • Feng D-L, Du Y-Z. Preparation and characteristics of lipid nanoemulsion formulations loaded with doxorubicin. Int J Nanomed. 2013;8:3141–3150.
  • Zara GP, Cavalli R, Fundarò A, et al. Pharmacokinetics of doxorubicin incorporated in solid lipid nanospheres (SLN). Pharmacol Res. 1999;40:281–286.
  • Miglietta A, Cavalli R, Bocca C, et al. Cellular uptake and cytotoxicity of solid lipid nanospheres (SLN) incorporating doxorubicin or paclitaxel. Int J Pharm. 2000;210:61–67.
  • Wong HL, Bendayan R, Rauth AM, et al. A mechanistic study of enhanced doxorubicin uptake and retention in multidrug resistant breast cancer cells using a polymer-lipid hybrid nanoparticle system. J Pharmacol Exp Therapeut. 2006;317:1372–1381.
  • Wong HL, Rauth AM, Bendayan R, et al. In vivo evaluation of a new polymer-lipid hybrid nanoparticle (PLN) formulation of doxorubicin in a murine solid tumor model. Eur J Pharmaceut Biopharmaceut. 2007;65:300–308.
  • Anwar A, Ovais M, Khan A, et al. Docetaxel loaded solid lipid nanoparticles: a novel drug delivery system. IET Nanobiotechnol. 2017;11:621–629.
  • Schwarz C, Mehnert W, Lucks J, et al. Solid lipid nanoparticles (SLN) for controlled drug delivery. I. Production, characterization and sterilization. J Control Release. 1994;30:83–96.
  • Dingler A, Runge S, Müller R. SLN (solid lipid nanoparticles) as drug carrier for an IV administration of poorly water soluble drugs. Eur J Pharmaceut Sci. 1996;4:S132.
  • Muèller RH, Maèder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur J Pharm Biopharm. 2000;50:161–177.
  • Mehnert W, Mäder K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2001;47:165–196.
  • Wissing S, Kayser O, Müller R. Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev. 2004;56:1257–1272.
  • Singh M, Ravin L. Parenteral emulsions as drug carrier systems. J Parenter Sci Technol. 1985;40:34–41.
  • Mizushima Y. Lipid microspheres (lipid emulsions) as a drug carrier—an overview. Adv Drug Deliv Rev. 1996;20:113–115.
  • Gettings S, Lordo R, Feder P, et al. A comparison of low volume, draize and in vitro eye irritation test data. II. Oil/water emulsions. Food Chem Toxicol. 1998;36:47–59.
  • Lovelyn C, Attama AA. Current state of nanoemulsions in drug delivery. JBNB. 2011;2:626.
  • Hadinoto K, Sundaresan A, Cheow WS. Lipid–polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Eur J Pharmaceut Biopharmaceut. 2013;85:427–443.
  • Ojea-Jimenez I, Comenge J, Garcia-Fernandez L, et al. Engineered inorganic nanoparticles for drug delivery applications. CDM. 2013;14:518–530.
  • Khalil AT, Ovais M, Ullah I, et al. Sageretia thea (Osbeck.) modulated biosynthesis of NiO nanoparticles and their in vitro pharmacognostic, antioxidant and cytotoxic potential. Artif Cells Nanomed Biotechnol. Forthcoming. [cited 7 Jul 2017]. doi:10.1080/21691401.2017.1345928.
  • Khalil AT, Ovais M, Ullah I, et al. Physical properties, biological applications and biocompatibility studies on biosynthesized single phase cobalt oxide (Co3O4) nanoparticles via Sageretia thea (Osbeck.). Arab J Chem. Forthcoming. [cited 19 July 2017].doi: 10.1016/j.arabjc.2017.07.004.
  • Liong M, Lu J, Kovochich M, et al. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano. 2008;2:889.
  • Khalil AT, Ovais M, Ullah I, et al. Sageretia thea (Osbeck.) mediated synthesis of zinc oxide nanoparticles and its biological applications. 2017;12:1767–1789.
  • Benyettou F, Rezgui R, Ravaux F, et al. Synthesis of silver nanoparticles for the dual delivery of doxorubicin and alendronate to cancer cells. J Mater Chem B. 2015;3:7237–7245.
  • El-Dine RSS, El Kaream SaA. Study of the effect of silver nanoparticles encapsulated by doxorubicin drug in the treatment of hepatocellular carcinoma. J Basic Sci Appl Res. 2015;12:123–129.
  • Elbaz NM, Ziko L, Siam R, et al. Core-shell silver/polymeric nanoparticles-based combinatorial therapy against breast cancer in-vitro. Sci Rep. 2016;6:30729.
  • Curry D, Cameron A, Macdonald B, et al. Adsorption of doxorubicin on citrate-capped gold nanoparticles: insights into engineering potent chemotherapeutic delivery systems. Nanoscale. 2015;7:19611–19619.
  • Chaudhary A, Dwivedi C, Gupta A, et al. One pot synthesis of doxorubicin loaded gold nanoparticles for sustained drug release. RSC Adv. 2015;5:97330–97334.
  • Manivasagan P, Bharathiraja S, Bui NQ, et al. Doxorubicin-loaded fucoidan capped gold nanoparticles for drug delivery and photoacoustic imaging. Int J Biol Macromol. 2016;91:578–588.
  • You J, Zhang G, Li C. Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release. ACS Nano. 2010;4:1033–1041.
  • Madhusudhan A, Reddy GB, Venkatesham M, et al. Efficient pH dependent drug delivery to target cancer cells by gold nanoparticles capped with carboxymethyl chitosan. IJMS. 2014;15:8216–8234.
  • Liao J, Li W, Peng J, et al. Combined cancer photothermal-chemotherapy based on doxorubicin/gold nanorod-loaded polymersomes. Theranostics. 2015;5:345.
  • Wang F, Wang Y-C, Dou S, et al. Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano. 2011;5:3679–3692.
  • Elbialy NS, Fathy MM, Khalil WM. Doxorubicin loaded magnetic gold nanoparticles for in vivo targeted drug delivery. Int J Pharm. 2015;490:190–199.
  • Banu H, Sethi DK, Edgar A, et al. Doxorubicin loaded polymeric gold nanoparticles targeted to human folate receptor upon laser photothermal therapy potentiates chemotherapy in breast cancer cell lines. J Photochem Photobiol B: Biol. 2015;149:116–128.
  • Asadishad B, Vossoughi M, Alamzadeh I. In vitro release behavior and cytotoxicity of doxorubicin-loaded gold nanoparticles in cancerous cells. Biotechnol Lett. 2010;32:649–654.
  • You J, Zhang R, Xiong C, et al. Effective photothermal chemotherapy using doxorubicin-loaded gold nanospheres that target EphB4 receptors in tumors. Cancer Res. 2012;72:4777–4786.
  • Tomuleasa C, Soritau O, Orza A, et al. Gold nanoparticles conjugated with cisplatin/doxorubicin/capecitabine lower the chemoresistance of hepatocellular carcinoma-derived cancer cells. J Gastrointestin Liver Dis. 2012;21:187–196.
  • Nigam S, Barick K, Bahadur D. Development of citrate-stabilized Fe3O4 nanoparticles: conjugation and release of doxorubicin for therapeutic applications. J Magnet Magnet Mater. 2011;323:237–243.
  • Maeng JH, Lee D-H, Jung KH, et al. Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer. Biomaterials. 2010;31:4995–5006.
  • Balcioglu M, Rana M, Yigit MV. Doxorubicin loading on graphene oxide, iron oxide and gold nanoparticle hybrid. J Mater Chem B. 2013;1:6187–6193.
  • Javid A, Ahmadian S, Saboury AA, et al. Chitosan‐coated superparamagnetic iron oxide nanoparticles for doxorubicin delivery: synthesis and anticancer effect against human ovarian cancer cells. Chem Biol Drug Des. 2013;82:296–306.
  • Omidirad R, Rajabi FH, Farahani BV. Preparation and in vitro drug delivery response of doxorubicin loaded PAA coated magnetite nanoparticles. J Serb Chem Soc. 2013;78:1609–1616.
  • Javid A, Ahmadian S, Saboury A, et al. Anticancer effect of doxorubicin loaded heparin based super-paramagnetic iron oxide nanoparticles against the human ovarian cancer cells. World Acad Sci Eng Tech. 2011;74:145–149.
  • Nair LS, Laurencin CT. Silver nanoparticles: synthesis and therapeutic applications. J Biomed Nanotechnol. 2007;3:301–316.
  • Kasithevar M, Saravanan M, Prakash P, et al. Green synthesis of silver nanoparticles using Alysicarpus monilifer leaf extract and its antibacterial activity against MRSA and CoNS isolates in HIV patients. J Interdisciplin Nanomed. 2017;2:131–141.
  • Subbaiya R, Priya A, Shankar K, et al. Biomimetic synthesis of silver nanoparticles from Streptomyces atrovirens and their potential anticancer activity against human breast cancer cells. IET Nanobiotechnol. 2017.doi: 10.1049/iet-nbt.2016.0222.
  • Ovais M, Khalil AT, Raza A, et al. Green synthesis of silver nanoparticles via plant extracts: beginning a new era in cancer theranostics. Nanomedicine. 2016;12:3157–3177.
  • Ovais M, Raza A, Naz S, et al. Current state and prospects of the phytosynthesized colloidal gold nanoparticles and their applications in cancer theranostics. Appl Microbiol Biotechnol. 2017;101:3551–3565.
  • Connor EE, Mwamuka J, Gole A, et al. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small. 2005;1:325–327.
  • Visaria RK, Griffin RJ, Williams BW, et al. Enhancement of tumor thermal therapy using gold nanoparticle–assisted tumor necrosis factor-α delivery. Mol Cancer Therapeut. 2006;5:1014–1020.
  • Gibson JD, Khanal BP, Zubarev ER. Paclitaxel-functionalized gold nanoparticles. J Am Chem Soc. 2007;129:11653–11661.
  • Bhattacharya R, Mukherjee P. Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev. 2008;60:1289–1306.
  • Cheng Y, Samia AC, Meyers JD, et al. Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer. J Am Chem Soc. 2008;130:10643.
  • Ghosh PS, Kim C-K, Han G, et al. Efficient gene delivery vectors by tuning the surface charge density of amino acid-functionalized gold nanoparticles. ACS Nano. 2008;2:2213.
  • Kim CK, Ghosh P, Pagliuca C, et al. Entrapment of hydrophobic drugs in nanoparticle monolayers with efficient release into cancer cells. J Am Chem Soc. 2009;131:1360.
  • Lee J-S, Green JJ, Love KT, et al. Gold, poly(beta-amino ester) nanoparticles for small interfering RNA delivery. Nano Lett. 2009;9:2402.
  • Arvizo R, Bhattacharya R, Mukherjee P. Gold nanoparticles: opportunities and challenges in nanomedicine. Expert Opin Drug Deliv. 2010;7:753–763.
  • Jang H, Ryoo S-R, Kostarelos K, et al. The effective nuclear delivery of doxorubicin from dextran-coated gold nanoparticles larger than nuclear pores. Biomaterials. 2013;34:3503–3510.
  • Lübbe AS, Bergemann C, Riess H, et al. Clinical experiences with magnetic drug targeting: a phase I study with 4′-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res. 1996;56:4686–4693.
  • Alexiou C, Arnold W, Klein RJ, et al. Locoregional cancer treatment with magnetic drug targeting. Cancer Res. 2000;60:6641–6648.
  • Khalil AT, Ovais M, Ullah I, et al. Biosynthesis of iron oxide (Fe2O3) nanoparticles via aqueous extracts of Sageretia thea (Osbeck.) and their pharmacognostic properties. Green Chem Lett Rev. 2017;10:186–201.
  • Newland B, Leupelt D, Zheng Y, et al. Magnetically controllable polymer nanotubes from a cyclized crosslinker for site-specific delivery of doxorubicin. Sci Rep. 2015;5:17478.
  • Dinan NM, Atyabi F, Rouini M-R, et al. Doxorubicin loaded folate-targeted carbon nanotubes: preparation, cellular internalization, in vitro cytotoxicity and disposition kinetic study in the isolated perfused rat liver. Mater Sci Eng C. 2014;39:47–55.
  • Al Tameemi MBM, Dobrinescu R, Marton G, et al. Doxorubicin loaded silica nanotubes: an investigation of the release behavior. Sci Bull Seri. 2015;77:185–194.
  • Heister E, Neves V, Tîlmaciu C, et al. Triple functionalisation of single-walled carbon nanotubes with doxorubicin, a monoclonal antibody, and a fluorescent marker for targeted cancer therapy. Carbon. 2009;47:2152–2160.
  • Heister E, Neves V, Lamprecht C, et al. Drug loading, dispersion stability, and therapeutic efficacy in targeted drug delivery with carbon nanotubes. Carbon. 2012;50:622–632.
  • Liu Z, Fan AC, Rakhra K, et al. Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. Angew Chem Int Ed. 2009;48:7668–7672.
  • Yu Y, Kong L, Li L, et al. Antitumor activity of doxorubicin-loaded carbon nanotubes incorporated poly (lactic-co-glycolic acid) electrospun composite nanofibers. Nanoscale Res Lett. 2015;10:343.
  • Zhang X, Meng L, Lu Q, et al. Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes. Biomaterials. 2009;30:6041–6047.
  • Shafiu Kamba A, Ismail M, Tengku Ibrahim TA, et al. A pH-sensitive, biobased calcium carbonate aragonite nanocrystal as a novel anticancer delivery system. BioMed Res Int. 2013;2013:587451.
  • Kamba SA, Ismail M, Hussein-Al-Ali SH, et al. In vitro delivery and controlled release of doxorubicin for targeting osteosarcoma bone cancer. Molecules. 2013;18:10580–10598.
  • Sherlock SP, Tabakman SM, Xie L, et al. Photothermally enhanced drug delivery by ultrasmall multifunctional FeCo/graphitic shell nanocrystals. ACS Nano. 2011;5:1505–1512.
  • Yang H-M, Oh BC, Kim JH, et al. Multifunctional poly (aspartic acid) nanoparticles containing iron oxide nanocrystals and doxorubicin for simultaneous cancer diagnosis and therapy. Coll Surf A: Physicochem Eng Aspects. 2011;391:208–215.
  • Chiang WH, Huang WC, Chang YJ, et al. Doxorubicin‐loaded nanogel assemblies with pH/thermo‐triggered payload release for intracellular drug delivery. Macromol Chem Phys. 2014;215:1332–1341.
  • Feng C, Sun G, Wang Z, et al. Transport mechanism of doxorubicin loaded chitosan based nanogels across intestinal epithelium. Eur J Pharmaceut Biopharmaceut. 2014;87:197–207.
  • Jayakumar R, Nair A, Rejinold NS, et al. Doxorubicin-loaded pH-responsive chitin nanogels for drug delivery to cancer cells. Carbohyd Polym. 2012;87:2352–2356.
  • Na K, Lee ES, Bae YH. Self-organized nanogels responding to tumor extracellular pH: pH-dependent drug release and in vitro cytotoxicity against MCF-7 cells. Bioconjugate Chem. 2007;18:1568–1574.
  • Nukolova NV, Oberoi HS, Cohen SM, et al. Folate-decorated nanogels for targeted therapy of ovarian cancer. Biomaterials. 2011;32:5417–5426.
  • Oishi M, Hayashi H, Iijima M, et al. Endosomal release and intracellular delivery of anticancer drugs using pH-sensitive PEGylated nanogels. J Mater Chem. 2007;17:3720–3725.
  • Qian K, Ma Y, Wan J, et al. The studies about doxorubicin-loaded p (N-isopropyl-acrylamide-co-butyl methylacrylate) temperature-sensitive nanogel dispersions on the application in TACE therapies for rabbit VX2 liver tumor. J Control Release. 2015;212:41–49.
  • Shi F, Ding J, Xiao C, et al. Intracellular microenvironment responsive PEGylated polypeptide nanogels with ionizable cores for efficient doxorubicin loading and triggered release. J Mater Chem. 2012;22:14168–14179.
  • Sousa-Herves A, Wedepohl S, Calderón M. One-pot synthesis of doxorubicin-loaded multiresponsive nanogels based on hyperbranched polyglycerol. Chem Commun. 2015;51:5264–5267.
  • Oh JK, Drumright R, Siegwart DJ, et al. The development of microgels/nanogels for drug delivery applications. Prog Polym Sci. 2008;33:448–477.
  • Oh JK, Lee DI, Park JM. Biopolymer-based microgels/nanogels for drug delivery applications. Prog Polym Sci. 2009;34:1261–1282.
  • Raemdonck K, Demeester J, De Smedt S. Advanced nanogel engineering for drug delivery. Soft Matter. 2009;5:707–715.
  • Bhadra U, Bhadra MP, Bulusu J, et al. 2014. Organic nanotubes: promising vehicles for drug selivery. Croatia: InTechOpen.
  • Zhou M, Liu S, Jiang Y, et al. Doxorubicin‐loaded single wall nanotube thermo‐sensitive hydrogel for gastric cancer chemo‐photothermal therapy. Adv Funct Mater. 2015;25:4730–4739.
  • Müller RH, Gohla S, Keck CM. State of the art of nanocrystals–special features, production, nanotoxicology aspects and intracellular delivery. Eur J Pharmaceut Biopharmaceut. 2011;78:1–9.
  • Gao L, Liu G, Ma J, et al. Application of drug nanocrystal technologies on oral drug delivery of poorly soluble drugs. Pharm Res. 2013;30:307–324.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.