1,266
Views
58
CrossRef citations to date
0
Altmetric
Review Article

Novel advances in targeted drug delivery

, &
Pages 633-642 | Received 04 Jul 2017, Accepted 01 Nov 2017, Published online: 23 Nov 2017

References

  • Huwyler J, Wu D, Pardridge WM. Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci USA. 1996;93:14164–14169.
  • Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7:771–782.
  • Weinberg BD, Blanco E, Gao J. Polymer implants for intratumoral drug delivery and cancer therapy. J Pharm Sci. 2008;97:1681–1702.
  • Jain NK, Gupta U. Application of dendrimer-drug complexation in the enhancement of drug solubility and bioavailability. Expert Opin Drug Metab Toxicol. 2008;4:1035–1052.
  • Elbayoumi TA, Torchilin VP. Tumor-specific antibody-mediated targeted delivery of Doxil reduces the manifestation of auricular erythema side effect in mice. Int J Pharm. 2008;357:272–279.
  • Mu L, Feng SS. A novel controlled release formulation for the anticancer drug paclitaxel (Taxol): PLGA nanoparticles containing vitamin E TPGS. J Control Release. 2003;86:33–48.
  • Socha M, Lamprecht A, El Ghazouani F, et al. Increase in the vascular residence time of propranolol-loaded nanoparticles coated with heparin. J Nanosci Nanotech. 2008;8:2369–2376.
  • Shukla R, Thomas TP, Desai AM, et al. HER2 specific delivery of methotrexate by dendrimer conjugated anti-HER2 mAb. Nanotechnology. 2008;19:295102
  • Zakeri-Milani P, Loveymi BD, Jelvehgari M, et al. The characteristics and improved intestinal permeability of vancomycin PLGA-nanoparticles as colloidal drug delivery system. Colloids Surf B Biointerfaces. 2013;103:174–181.
  • Gillies ER, Frechet JM. Dendrimers and dendritic polymers in drug delivery. Drug Discov Today. 2005;10:35–43.
  • Patri AK, Kukowska-Latallo JF, Baker JR Jr. Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv Drug Deliv Rev. 2005;57:2203–2214.
  • Madaan K, Kumar S, Poonia N, et al. Dendrimers in drug delivery and targeting: drug-dendrimer interactions and toxicity issues. J Pharm Bioallied Sci. 2014;6:139–150.
  • Sercombe L, Veerati T, Moheimani F, et al. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015;6:1–13.
  • Ozturk K, Fernandez-Megia E, Novoa-Carballal R, et al. Comparative in vitro studies on PBN loaded nanoparticles prepared by biodegradable chitosan, PLGA polymers and their PEGylated block copolymers. J Drug Deliv Sci Technol. 2014b;24:148–152.
  • Ozturk K, Caban S, Kozlu S, et al. The influence of technological parameters on the physicochemical properties of blank PLGA nanoparticles. Pharmazie. 2010;65:665–669.
  • Chan JM, Zhang L, Yuet KP, et al. PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery. Biomaterials 2009;30:1627–1634.
  • Liu Y, Li K, Pan J, et al. Folic acid conjugated nanoparticles of mixed lipid monolayer shell and biodegradable polymer core for targeted delivery of Docetaxel. Biomaterials. 2010;31:330–338.
  • Grossen P, Witzigmann D, Sieber S, et al. PEG-PCL-based nanomedicines: A biodegradable drug delivery system and its application. J Control Release. 2017;260:46–60.
  • Gan Q, Wang T. Chitosan nanoparticle as protein delivery carrier - Systematic examination of fabrication conditions for efficient loading and release. Colloids Surf B Biointerfaces. 2007;59:24–34.
  • Cai L, Yu R, Hao X, et al. Folate receptor-targeted bioflavonoid genistein-loaded chitosan nanoparticles for enhanced anticancer effect in cervical cancers. Nanoscale Res Lett. 2017;12:509.
  • Javia A, Thakkar H. Intranasal delivery of Tapentadol Hydrochloride loaded chitosan nanoparticles: Formulation, characterization and its in-vivo evaluation. J Microencapsul. 2017;1–34.
  • Kang RH, Kwon JY, Kim Y, et al. Cisplatin-mediated formation of polyampholytic chitosan nanoparticles with attenuated viscosity and pH-sensitive drug release. Langmuir. 2017;33:9091–9099.
  • Sahin A, Yoyen-Ermis D, Caban-Toktas S, et al. Evaluation of brain-targeted chitosan nanoparticles through blood-brain barrier cerebral microvessel endothelial cells. J Microencapsul. 2017 [Sep 13]. DOI:10.1080/02652048.2017.1375039
  • Allen TM, Cullis PR. Liposomal drug delivery systems: From concept to clinical applications. Adv Drug Deliv Rev. 2013;65:36–48.
  • Klibanov AL, Maruyama K, Torchilin VP, et al. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 1990;268:235–237.
  • Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8:102.
  • Najlah M, Freeman S, Attwood D, et al. In vitro evaluation of dendrimer prodrugs for oral drug delivery. Int J Pharm. 2007;336:183–190.
  • Zhu S, Hong M, Zhang L, et al. PEGylated PAMAM dendrimer-doxorubicin conjugates: in vitro evaluation and in vivo tumor accumulation. Pharm Res. 2010;27:161–174.
  • Ozturk K, Erturk AS, Sarisozen C, et al. Cytotoxicity and in vitro characterization studies of synthesized Jeffamine-cored PAMAM dendrimers. J Microencapsul. 2014a;31:127–136.
  • D'emanuele A, Attwood D. Dendrimer-drug interactions. Adv Drug Deliv Rev 2005;57:2147–2162.
  • Mishra P, Nayak B, Dey RK. PEGylation in anti-cancer therapy: An overview. Asian J Pharm Sci. 2016;11:337–348.
  • Milla P, Dosio F, Cattel L. PEGylation of Proteins and Liposomes: a Powerful and Flexible Strategy to Improve the Drug Delivery. Curr Drug Metab. 2012;13:105–119.
  • Danhier F, Ansorena E, Silva JM, et al. PLGA-based nanoparticles: An overview of biomedical applications. J Control Release. 2012;161:505–522.
  • Li YP, Pei YY, Zhang XY, et al. PEGylated PLGA nanoparticles as protein carriers: synthesis, preparation and biodistribution in rats. J Control Release. 2001;71:203–211.
  • Danhier F, Feron O, Preat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release. 2010;148:135–146.
  • Lammers T, Kiessling F, Hennink WE, et al. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Control Release. 2012;161:175–187.
  • Yokoyama M. Drug targeting with nano-sized carrier systems. J Artif Organs. 2005;8:77–84.
  • Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986;46:6387–6392.
  • Maeda H, Sawa T, Konno T. Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J Control Release. 2001;74:47–61.
  • Maeda H, Bharate GY, Daruwalla J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm. 2009;71:409–419.
  • Liang N, Sun S, Hong J, et al. In vivo pharmacokinetics, biodistribution and antitumor effect of paclitaxel-loaded micelles based on alpha-tocopherol succinate-modified chitosan. Drug Deliv. 2016;23:2651–2660.
  • Bae YH, Park K. Targeted drug delivery to tumors: Myths, reality and possibility. J Control Release. 2011;153:198–205.
  • Sanna V, Pala N, Sechi M. Targeted therapy using nanotechnology: focus on cancer. Int J Nanomed. 2014;9:467–483.
  • Goren D, Horowitz AT, Zalipsky S, et al. Targeting of stealth liposomes to erbB-2 (Her/2) receptor: in vitro and in vivo studies. Br J Cancer. 1996;74:1749–1756.
  • Kirpotin DB, Drummond DC, Shao Y, et al. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res. 2006;66:6732–6740.
  • Davis SS. Biomedical applications of nanotechnology–implications for drug targeting and gene therapy. Trends Biotechnol. 1997;15:217–224.
  • Singh Y, Palombo M, Sinko PJ. Recent trends in targeted anticancer prodrug and conjugate design. Curr Med Chem. 2008;15:1802–1826.
  • Vasir JK, Reddy MK, Labhasetwar VD. Nanosystems in drug targeting: Opportunities and challenges. Cnano. 2005;1:47–64.
  • Xiao K, Li YP, Luo JT, et al. The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials 2011;32:3435–3446.
  • Bertrand N, Wu J, Xu XY, et al. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv Drug Delivery Rev. 2014;66:2–25.
  • Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single domains. Nat Biotechnol. 2005;23:1126–1136.
  • Perez-Herrero E, Fernandez-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm. 2015;93:52–79.
  • Ozturk K, Esendagli G, Gurbuz MU, et al. Effective targeting of gemcitabine to pancreatic cancer through PEG-cored Flt-1 antibody-conjugated dendrimers. Int J Pharm. 2017;517:157–167.
  • Pang ST, Lin FW, Chuang CK, et al. Co-delivery of docetaxel and p44/42 MAPK siRNA using PSMA antibody-conjugated BSA-PEI layer-by-layer nanoparticles for prostate cancer target therapy. Macromol Biosci. 2017;17:1–9.
  • He H, Li Y, Jia XR, et al. PEGylated Poly(amidoamine) dendrimer-based dual-targeting carrier for treating brain tumors. Biomaterials. 2011;32:478–487.
  • Winkler J, Martin-Killias P, Pluckthun A, et al. EpCAM-targeted delivery of nanocomplexed siRNA to tumor cells with designed ankyrin repeat proteins. Mol Cancer Ther. 2009;8:2674–2683.
  • Accardo A, Aloj L, Aurilio M, et al. Receptor binding peptides for target-selective delivery of nanoparticles encapsulated drugs. Int J Nanomed. 2014;9:1537–1557.
  • Helbok A, Rangger C, Von Guggenberg E, et al. Targeting properties of peptide-modified radiolabeled liposomal nanoparticles. Nanomedicine 2012;8:112–118.
  • Saw PE, Kim S, Lee IH, et al. Aptide-conjugated liposome targeting tumor-associated fibronectin for glioma therapy. J Mater Chem B. 2013;1:4723–4726.
  • Garg SM, Paiva IM, Vakili MR, et al. Traceable PEO-poly(ester) micelles for breast cancer targeting: The effect of core structure and targeting peptide on micellar tumor accumulation. Biomaterials. 2017;144:17–29.
  • Suga T, Fuchigami Y, Hagimori M, et al. Ligand peptide-grafted PEGylated liposomes using HER2 targeted peptide-lipid derivatives for targeted delivery in breast cancer cells: the effect of serine-glycine repeated peptides as a spacer. Int J Pharm. 2017;521:361–364.
  • Kumar Mishra S, Kumar A. NALDB: nucleic acid ligand database for small molecules targeting nucleic acid. Database (Oxford). 2016;2016:1–11.
  • Cheng J, Teply BA, Sherifi I, et al. Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials. 2007;28:869–876.
  • Zhang LF, Radovic-Moreno AF, Alexis F, et al. Co-delivery of hydrophobic and hydrophilic drugs from nanoparticle-aptamer bioconjugates. Chemmedchem. 2007;2:1268–1271.
  • Zhou JH, Rossi JJ. Cell-specific aptamer-mediated targeted drug delivery. Oligonucleotides. 2011;21:1–10.
  • Campbell IG, Jones TA, Foulkes WD, et al. Folate-binding protein is a marker for ovarian cancer. Cancer Res. 1991;51:5329–5338.
  • Franklin WA, Waintrub M, Edwards D, et al. New anti-lung-cancer antibody cluster-12 reacts with human folate receptors present on adenocarcinoma. Int J Cancer. 1994;8:89–95.
  • Holm J, Hansen SI, Hoiermadsen M, et al. Folate receptor of human mammary adenocarcinoma. Apmis. 1994;102:413–419.
  • Kukowska-Latallo JF, Candido KA, Cao Z, et al. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res. 2005;65:5317–5324.
  • Dhanikula RS, Argaw A, Bouchard JF, et al. Methotrexate loaded polyether-copolyester dendrimers for the treatment of gliomas: enhanced efficacy and intratumoral transport capability. Mol Pharmaceutics. 2008;5:105–116.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.