92
Views
13
CrossRef citations to date
0
Altmetric
Original Article

Antiangiogenic evaluation of ZnWO4 nanoparticles synthesised through microwave-assisted hydrothermal method

, ORCID Icon, , , &
Pages 806-817 | Received 16 Nov 2017, Accepted 13 Jan 2018, Published online: 31 Jan 2018

References

  • Rashidi B, Malekzadeh M, Goodarzi M, et al. Green tea and its anti-angiogenesis effects. Biomed Pharmacother. 2017;89:949–956.
  • Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995;1:27–31.
  • Hall AP. The role of angiogenesis in cancer. Comp Clin Path. 2005;13:95–99.
  • Stephenson JA, Goddard JC, Al-Taan O, et al. Tumour angiogenesis: a growth area—from john hunter to judah folkman and beyond. J Cancer Res. 2013;2013:1–6.
  • Nishida N, Yano H, Nishida T, et al. Angiogenesis in cancer. Vasc Health Risk Manag. 2006;2:213–219.
  • Yang W-H, Xu J, Mu J-B, et al. Revision of the concept of anti-angiogenesis and its applications in tumor treatment. Chronic Dis Transl Med. 2017;3:33–40.
  • Ferrara N, Hillan KJ, Gerber H-P, et al. Case history: discovery and development of bevacizumab, an anti-vegf antibody for treating cancer. Nat Rev Drug Discov. 2004;3:391–400.
  • Frampton JE. Lenvatinib: a review in refractory thyroid cancer. Target Oncol. 2016;11:115–122.
  • Xie L, Ji T, Guo W. Anti-angiogenesis target therapy for advanced osteosarcoma (Review). Oncol Rep. 2017;38:625–636.
  • Krajewska J, Gawlik T, Jarzab B. Advances in small molecule therapy for treating metastatic thyroid cancer. Expert Opin Pharmacother. 2017;18:1049–1060.
  • Schlieve CR, Mojica SG, Holoyda KA, et al. Vascular Endothelial Growth Factor (VEGF) bioavailability regulates angiogenesis and intestinal stem and progenitor cell proliferation during postnatal small intestinal development. PLoS One. 2016;11:e0151396.
  • O’Donnell RK, Falcon B, Hanson J, et al. VEGF-A/VEGFR inhibition restores hematopoietic homeostasis in the bone marrow and attenuates tumor growth. Cancer Res. 2016;76:517–524.
  • Gurunathan S, Lee KJ, Kalishwaralal K, et al. Antiangiogenic properties of silver nanoparticles. Biomaterials. 2009;30:6341–6350.
  • Huang S-T, Yang R-C, Wu H-T, et al. Zinc-chelation contributes to the anti-angiogenic effect of ellagic acid on inhibiting MMP-2 activity, cell migration and tube formation. PLoS One. 2011;6:e18986.
  • Song H, Wang W, Zhao P, et al. Cuprous oxide nanoparticles inhibit angiogenesis via down regulation of VEGFR2 expression. Nanoscale. 2014;6:3206.
  • Khawar IA, Kim JH, Kuh H-J. Improving drug delivery to solid tumors: priming the tumor microenvironment. J Control Release. 2015;201:78–89.
  • Peer D, Karp JM, Hong S, et al. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2:751–760.
  • Yu S-H, Liu B, Mo M-S, et al. General synthesis of single-crystal tungstate nanorods/nanowires: a facile, low-temperature solution approach. Adv Funct Mater. 2003;13:639–647.
  • He G, Fan H, Ma L, et al. Synthesis, characterization and optical properties of nanostructured ZnWO4. Mater Sci Semicond Process. 2016;41:404–410.
  • Kumar RD, Andou Y, Karuppuchamy S. Synthesis and characterization of nanostructured Ni-WO3 and NiWO4 for supercapacitor applications. J Alloys Compd. 2016;654:349–356.
  • Gedye R, Smith F, Westaway K, et al. The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett. 1986;27:279–282.
  • Giguere RJ, Bray TL, Duncan SM, et al. Application of commercial microwave ovens to organic synthesis. Tetrahedron Lett. 1986;27:4945–4948.
  • Perreux L, Loupy A. A tentative rationalization of microwave effects in organic synthesis according to the reaction medium, and mechanistic considerations. Tetrahedron. 2001;57:9199–9223.
  • Lidström P, Tierney J, Wathey B, et al. Microwave assisted organic synthesis—a review. Tetrahedron. 2001;57:9225–9283.
  • Anwar J, Shafique U, uz-Zaman W, Rehman R, et al. Microwave chemistry: effect of ions on dielectric heating in microwave ovens. Arab J Chem. 2015;8:100–104.
  • Gabriel C, Gabriel S, Grant EH, et al. Dielectric parameters relevant to microwave dielectric heating. Chem Soc Rev. 1998;27:213.
  • Kappe CO. Controlled microwave heating in modern organic synthesis. Angew Chem Int Ed Engl. 2004;43:6250–6284.
  • Polshettiwar V, Varma RS. Microwave-assisted organic synthesis and transformations using benign reaction media. Acc Chem Res. 2008;41:629–639.
  • Varma RS, and, Kumar D. Microwave-accelerated solvent-free synthesis of thioketones, thiolactones, thioamides, thionoesters, and thioflavonoids. Org Lett. 1999;1:697–700.
  • Antonia Herrero M, Kremsner JM, Kappe CO. Nonthermal microwave effects revisited: on the importance of internal temperature monitoring and agitation in microwave chemistry. J Org Chem. 2008;73:36–47.
  • Katritzky AR. Microwave-assisted heterocyclic synthesis. Arkivoc. 2003;2003:68–86.
  • Naeimi H, Raeisi A, Moradian M. Microwave assisted chemistry: a rapid and regioselective route for direct ortho-acylation of phenols and naphthols by methanesulfonic acid as catalyst. Arab J Chem. 2017;10:S2723–S2728.
  • Cabral AC, Cavalcante LS, Deus RC, et al. Photoluminescence properties of praseodymium doped cerium oxide nanocrystals. Ceram Int. 2014;40:4445–4453.
  • De Santana YVB, Gomes JEC, Matos L, et al. Silver molybdate and silver tungstate nanocomposites with enhanced photoluminescence. Nanomater Nanotechnol. 2014;4:22.
  • Pinatti IM, Mazzo TM, Gonçalves RF, et al. CaTiO3 and Ca1 − 3xSmxTiO3: photoluminescence and morphology as a result of Hydrothermal Microwave Methodology. Ceram Int. 2016;42:1352–1360.
  • Rocha LSR, Foschini CR, Silva CC, et al. Novel ozone gas sensor based on ZnO nanostructures grown by the microwave-assisted hydrothermal route. Ceram Int. 2016;42:4539–4545.
  • da Silva LF, Catto AC, Avansi W, et al. Acetone gas sensor based on α-Ag2WO4 nanorods obtained via a microwave-assisted hydrothermal route. J. Alloys Compd. 2016;683:186–190.
  • Basiev T, Sobol A, Voronko Y, et al. Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers. Opt Mater (Amst). 2000;15:205–216.
  • Kloprogge JT, Weier ML, Duong LV, et al. Microwave-assisted synthesis and characterisation of divalent metal tungstate nanocrystalline minerals: ferberite, hübnerite, sanmartinite, scheelite and stolzite. Mater Chem Phys. 2004;88:438–443.
  • Kalinko A, Kuzmin A. Raman and photoluminescence spectroscopy of zinc tungstate powders. J Lumin. 2009;129:1144–1147.
  • Li K, Xue J, Zhang Y, et al. ZnWO4 nanorods decorated with Ag/AgBr nanoparticles as highly efficient visible-light-responsive photocatalyst for dye AR18 photodegradation. Appl Surf Sci. 2014;320:1–9.
  • Wang Q, Shi Y, Niu T, et al. Preparing ZnWO4–CdS composite with excellent visible light photocatalytic activity under mild conditions. J Sol Gel Sci Technol. 2017;83:555–566.
  • Ernsting MJ, Murakami M, Roy A, et al. Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J Control Release. 2013;172:782–794.
  • Zhang H, Zhou K, Li Z, et al. Plate-like hydroxyapatite nanoparticles synthesized by the hydrothermal method. J Phys Chem Solids. 2009;70:243–248
  • Gref R, Minamitake Y, Peracchia MT, et al. Biodegradable long-circulating polymeric nanospheres. Science. 1994;263:1600–1603.
  • Bi J, Wu L, Li Z, et al. A facile microwave solvothermal process to synthesize ZnWO4 nanoparticles. J Alloys Compd. 2009;480:684–688.
  • Chen S-J, Zhou J-H, Chen X-T, et al. Fabrication of nanocrystalline ZnWO4 with different morphologies and sizes via hydrothermal route. Chem Phys Lett. 2003;375:185–190.
  • Li C, Liang Y, Mao J, et al. Enhancement of gas-sensing abilities in p-type ZnWO4 by local modification of Pt nanoparticles. Anal Chim Acta. 2016;927:107–116.
  • Van Minh N, Hung NM, Xuan Thao DT, et al. Structural and Optical Properties of ZnWO 4:Er 3+ Crystals. J Spectrosc. 2013;2013:1–5.
  • Zhai Y, Wang M, Zhao Q, et al. Fabrication and Luminescent properties of ZnWO 4:Eu 3+, Dy 3+ white light-emitting phosphors. J Lumin. 2016;172:161–167.
  • Danielsen PH, Cao Y, Roursgaard M, et al. Endothelial cell activation, oxidative stress and inflammation induced by a panel of metal-based nanomaterials. Nanotoxicology. 2015;9:813–824.
  • Yin N, Liu Q, Liu J, et al. Silver nanoparticle exposure attenuates the viability of rat cerebellum granule cells through apoptosis coupled to oxidative stress. Small. 2013;9:1831–1841.
  • Carmeliet P. Blood vessels and nerves: common signals, pathways and diseases. Nat Rev Genet. 2003;4:710–720.
  • Folkman J. Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov. 2007;6:273–286.
  • Kalishwaralal K, Sheikpranbabu S, BarathManiKanth S, et al. Gold nanoparticles inhibit vascular endothelial growth factor-induced angiogenesis and vascular permeability via Src dependent pathway in retinal endothelial cells. Angiogenesis 2011;14:29–45.
  • ImaiSuese K, Senuma K, Takashima MH. Effects of cell viability and in vitro angiogenesis with nanostructured zinc oxide. Nano Biomed. 2011;3:237–241.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.