659
Views
46
CrossRef citations to date
0
Altmetric
Review Article

Drug delivery targets and systems for targeted treatment of rheumatoid arthritis

&
Pages 845-857 | Received 08 Sep 2017, Accepted 15 Jan 2018, Published online: 06 Feb 2018

References

  • Quan LD, Thiele GM, Tian J, et al. The development of novel therapies for rheumatoid arthritis. Expert Opin Ther Pat. 2008;18:723–738.
  • Ghivizzani SC, Oligino TJ, Glorioso JC, et al. Direct gene delivery strategies for the treatment of rheumatoid arthritis. Drug Discovery Today DDT. 2001;6:259–267.
  • Burmester GR, Pope JE. Novel treatment strategies in rheumatoid arthritis. Lancet. 2017;389:2338–2348.
  • Lühder F, Reichardt HM. Novel drug delivery systems tailored for improved administration of glucocorticoids. Int J Mol Sci. 2017;18:E1836.
  • Horton S, Buch MH, Emery P. Efficacy, tolerability and safety of biologic therapy in rheumatoid disease: patient considerations. Drug Healthc Patient Saf. 2010;2:101–119.
  • Butoescu N, Jordan O, Doelker E. Intra-articular drug delivery systems for the treatment of rheumatic diseases: a review of the factors influencing their performance. Eur J Pharm Biopharm. 2009;73:205–218.
  • Burt HM, Tsallas A, Gilchrist S, et al. Intra-articular drug delivery systems: overcoming the shortcomings of joint disease therapy. Expert Opin Drug Deliv. 2009;6:17–26.
  • Gerwin N, Hops C, Lucke A. Intraarticular drug delivery in osteoarthritis. Adv Drug Deliv Rev. 2006;58:226–242.
  • Campbell IK, Roberts LJ, Wicks IP. Molecular targets in immune-mediated diseases: the case of tumour necrosis factor and rheumatoid arthritis. Immunol Cell Biol. 2003;81:354–366.
  • Smolen JS, Aletaha D, Koeller M, et al. New therapies for treatment of rheumatoid arthritis. Lancet. 2007;370:1861–1874.
  • Alghasham A, Rasheed Z. Therapeutic targets for rheumatoid arthritis: progress and promises. Autoimmunity. 2014;47:77–94.
  • Roy K, Kanwar RK, Kanwar JR. Molecular targets in arthritis and recent trends in nanotherapy. Int J Nanomed. 2015;10:5407–5420.
  • Szekanecz Z, Koch AE. Angiogenesis and its targeting in rheumatoid arthritis. Vascul Pharmacol. 2009;51:1–7.
  • Fang Y, Quan LD, Cui L, et al. Development of macromolecular produrg for rheumatoid arthritis. Adv Drug Deliv Rev. 2012;64:1205–1219.
  • Yokoyama M. Drug targeting with nano-sized carrier systems. J Artif Organs. 2005;8:77–84.
  • Marcucci F, Lefoulon F. Active targeting with particulate drug carriers in tumor therapy: fundamentals and recent progress. Research Focus. 2004;9:219–228.
  • Pirollo KF, Chang EH. Does a targeting ligand influence nanoparticle tumor localization or uptake? Trends Biotechnol. 2008;26:552–558.
  • Tinkle M. Folic acid and food fortification: implications for the primary care practitioner. Nurse Pract. 1997;22:105–106.
  • Salazar MDA, Ratnam M. The folate receptor: what does it promise in tissue-targeted therapeutics? Cancer Metastasis Rev. 2007;26:141–152.
  • Paulos CM, Turk MJ, Breur GJ, et al. Folate receptor-mediated targeting of therapeutic and imaging agents to activated macrophages in rheumatoid arthritis. Adv Drug Deliv Rev. 2004;56:1205–1217.
  • van der Heijden JW, Oerlemans R, Dijkmans BAC, et al. Folate receptor β as a potential delivery route for novel folate antagonists to macrophages in the synovial tissue of rheumatoid arthritis patients. Arthritis Rheumatol. 2000;60:12–21.
  • Thomas TP, Goonewardena SN, Majoros IJ, et al. Folate-target nanoparticles show efficacy in the treatment of inflammatory arthritis. Arthritis Rheumatol. 2011;63:2671–2680.
  • Nogueira E, Gomes AC, Preto A, et al. Folate-targeted nanoparticles for rheumatoid arthritis therapy. Nanomedicine. 2016;12:1113–1126.
  • Low PS, Henne WA, Doorneweerd DD. Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc Chem Res. 2008;41:120–129.
  • Hilgenbrink AR, Low PS. Folate receptor-mediated drug targeting: from therapeutics to diagnostics. J Pharm Sci. 2005;94:2135–2146.
  • Xia W, Hilgenbrink AR, Matteson EL, et al. A functional folate receptor is induced during macrophage activation and can be used to target drugs to activated macrophages. Blood. 2009;113:438–446.
  • Sudimack J, Lee RJ. Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev. 2000;41:147–162.
  • Pandya NM, Dhalla NS, Santani DD. Angiogenesis – a new target for future therapy. Vascul Pharmacol. 2006;44:265–274.
  • Bodolay E, Koch AE, Kim J, et al. Angiogenesis and chemokines in rheumatoid arthritis and other systemic inflammatory rheumatic diseases. J Cell Mol Med. 2002;6:357–376.
  • Azizi G, Boghozian R, Mirshafiey A. The potential role of angiogenic factors in rheumatoid arthritis. Int J Rheum Dis. 2014;17:369–383.
  • Koch AE. Angiogenesis as a target in rheumatoid arthritis. Ann Rheum Dis. 2003;62:60ii–ii67.
  • Eliceiri BP, Cheresh DA. The role of αv integrins during angiogenesis: insights into potential mechanisms of action and clinical development. J Clin Invest. 1999;103:1227–1230.
  • Avraamides CJ, Garmy-Susini B, Varner JA. Integrins in angiogenesis and lymphangiogenesis. Nat Rev Cancer. 2008;8:604–617.
  • Firestein GS. Starving the synovium: angiogenesis and inflammation in rheumatoid arthritis. J Clin Invest. 1999;103:3–4.
  • Wilder RL. Integrin alpha V beta 3 as a target for treatment of rheumatoid arthritis and related rheumatic diseases. Ann Rheum Dis. 2002;61:96ii–9699.
  • Storgard CM, Stupack DG, Jonczyk A, et al. Decreased angiogenesis and arthritic disease in rabbits treated with an alphavbeta3 antagonist. J Clin Invest. 1999;103:47–54.
  • Strömblad S, Cheresh DA. Integrins, angiogenesis and vascular cell survival. Chem Biol. 1996;3:881–885.
  • Koning GA, Schiffelers RM, Wauben MHM, et al. Targeting of angiogenic endothelial cells at sites of inflammation by dexamethasone phosphate–containing RGD peptide liposomes inhibits experimental arthritis. Arthritis Rheum. 2006;54:1198–1208.
  • Byrne AM, Bouchier-Hayes DJ, Harmey JH. Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF). J Cell Mol Med. 2005;9:777–794.
  • Kiselyov A, Balakin KV, Tkachenko SE. VEGF/VEGFR signalling as a target for inhibiting angiogenesis. Expert Opin Investig Drugs. 2007;16:83–107.
  • Shi C, Gao F, Gao X, et al. A novel anti-VEGF165 monoclonal antibody-conjugated liposomal nanocarrier system: physical characterization and cellular uptake evaluation in vitro and in vivo. Biomed Pharmacother. 2015;69:191–200.
  • Shi C, Cao H, He W, et al. Novel drug delivery liposomes targeted with a fully human anti-VEGF165 monoclonal antibody show superior antitumor efficacy in vivo. Biomed Pharmacother. 2015;73:48–57.
  • Martel-Pelletier J, Welsch DJ, Pelletier JP. Metalloproteases and inhibitors in arthritic diseases. Best Pract Res Clin Rheumatol. 2001;15:805–829.
  • Johnson J. Matrix metalloproteinases and their inhibitors in cardiovascular pathologies: current knowledge and clinical potential. Metalloproteinases Med. 2014;1:21–36.
  • Burrage PS, Mix KS, Brinckerhoff CE. Matrix metalloproteinases: role in arthritis. Front Biosci. 2006;11:529–543.
  • Mengshol JA, Mix KS, Brinckerhoff CE. Matrix metalloproteinases as therapeutic targets in arthritic diseases: bull's-eye or missing the mark? Arthritis Rheum. 2002;46:13–20.
  • Tomita T, Nakase T, Kaneko M, et al. Expression of extracellular matrix metalloproteinase inducer and enhancement of the production of matrix metalloproteinases in rheumatoid arthritis. Arthritis Rheum. 2002;46:373–378.
  • Vartak DG, Gemeinhart RA. Matrix metalloproteases: underutilized targets for drug delivery. J Drug Target. 2007;15:1–20.
  • Bigg HF, Rowan AD. The inhibition of metalloproteinases as a therapeutic target in rheumatoid arthritis and osteoarthritis. Curr Opin Pharmacol. 2001;1:314–320.
  • Gialeli C, Theocharis AD, Karamanos NK. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. Febs J. 2011;278:16–27.
  • Medina OP, Haikola M, Tahtinen M, et al. Liposomal tumor targeting in drug delivery utilizing mmp-2- and mmp-9-binding ligands. J Drug Deliv. 2011;2011:160515.
  • McCarthy DA, Nazem AA, McNeilan J, et al. Nanoenhanced matrix metalloproteinase-responsive delivery vehicles for disease resolution and imaging. Exp Biol Med. 2016;241: 2023–2032.
  • Ulbrich H, Eriksson EE, Lindbom L. Leukocyte and endothelial cell adhesion molecules as targets for therapeutic interventions in inflammatory disease. Trends Pharmacol Sci. 2003;24:640–647.
  • Peres RS, Menezes GB, Teixeira MM, et al. Pharmacological opportunities to control inflammatory diseases through inhibition of the leukocyte recruitment. Pharmacol Res. 2016;112:37–48.
  • Cronstein BN, Weissmann G. The adhesion molecules of inflammation. Arthritis Rheum. 1993;36:147–157.
  • Jalkanen S. Leukocyte-endothelial cell interaction and the control of leukocyte migration into inflamed synovium. Springer Semin Immunopathol. 1989;11:187–198.
  • Ehrhardt C, Kneuer C, Bakowsky U. Selectins-an emerging target for drug delivery. Adv Drug Deliv Rev. 2004;56:527–549.
  • Jubeli E, Moine L, Vergnaud-Gauduchon J, et al. E-selectin as a target for drug delivery and molecular imaging. J Control Release. 2012;158:194–206.
  • Everts M, Koning GA, Kok RJ, et al. In vitro cellular handling and in vivo targeting of E-selectin-directed immunoconjugates and immunoliposomes used for drug delivery to inflamed endothelium. Pharm Res. 2003;20:64–72.
  • Kessner S, Krause A, Rothe U, et al. Investigation of the cellular uptake of E-Selectin-targeted immunoliposomes by activated human endothelial cells. BBA Membranes. 2001;1514:177–190.
  • Gunawan RC, Auguste DT. The role of antibody synergy and membrane fluidity in the vascular targeting of immunoliposomes. Biomaterials. 2010;31:900–907.
  • Bendas G, Krause A, Bakowsky U, et al. Targetability of novel immunoliposomes prepared by a new antibody conjugation technique. Int J Pharm. 1999;181:79–93.
  • Kok RJ, Everts M, Ásgeirsdóttir SA, et al. Cellular handling of a dexamethasone-anti-E-selectin immunoconjugate by activated endothelial cells: comparison with free dexamethasone. Pharm Res 2002;19:1730–1735.
  • Chorny A, Gonzalez-Rey E, Varela N, et al. Signaling mechanisms of vasoactive intestinal peptide in inflammatory conditions. Regul Pept. 2006;137:67–74.
  • Dorsam G, Voice J, Kong Y, et al. Vasoactive intestinal peptide mediation of development and functions of T lymphocytes. Ann N Y Acad Sci. 2000;921:79–91.
  • May O, Koo Y, Rubinstein I. Actively targeted low-dose camptothecin as a safe, long-acting, disease-modifying nanomedicine for rheumatoid arthritis. Pharm Res. 2011;28:776–787.
  • Sethi V, Rubinstein I, Kuzmis A, et al. Novel, biocompatible, and disease modifying VIP nanomedicine for rheumatoid arthritis. Mol Pharm. 2013;10:728–738.
  • el Bannoudi H, Ioan-Facsinary A, Toes RM. Bridging autoantibodies and arthritis: the role of Fc receptors. In: Daëron M, Nimmerjahn F, editors. Fc receptors, current topics in microbiology and immunology. New York (NY): Springer; 2014. p. 303–318.
  • Magnusson SE, Wennerberg E, Matt P, et al. Dysregulated Fc receptor function in active rheumatoid arthritis. Immunol Lett. 2014;162:200–206.
  • Kleinau S, Martinsson P, Heyman B. Induction and suppression of collagen-induced arthritis is dependent on distinct fcgamma receptors. J Exp Med. 2000;191:1611–1616.
  • Mancardi DA, Albanesi M, Jönsson F, et al. The high-affinity human IgG receptor FcγRI (CD64) promotes IgG-mediated inflammation, anaphylaxis, and antitumor immunotherapy. Blood. 2013;121:1563–1573.
  • Williams BD, O'Sullivan MM, Saggu GS, et al. Synovial accumulation of technetium labelled liposomes in rheumatoid arthritis. Ann Rheum Dis. 1987;46:314–318.
  • Love WG, Amos N, Kellaway IW, et al. Specific accumulation of technetium-99m radiolabelled, negative liposomes in the inflamed paws of rats with adjuvant induced arthritis: effect of liposome size. Ann Rheum Dis. 1989;48:143–148.
  • Vanniasinghe AS, Bender V, Manolios N. The potential of liposomal drug delivery for the treatment of inflammatory arthritis. Semin Arthritis Rheu. 2009;39:182–196.
  • Metselaar JM, Wauben MHM, Wagenaar-Hilbers JPA, et al. Complete remission of experimental arthritis by joint targeting of glucocorticoids with long-circulating liposomes. Arthritis Rheum. 2003;48:2059–2066.
  • Corvo ML, Boerman OC, Oyen WJG, et al. Intravenous administration of superoxide dismutase entrapped in long circulating liposomes II. In vivo fate in a rat model of adjuvant arthritis. BBA Membranes. 1999;1419:325–334.
  • Danhier F, Ansorena E, Silva JM, et al. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012;161:505–522.
  • Higaki M, Ishihara T, Izumo N, et al. Treatment of experimental arthritis with poly(D, L-lactic/glycolic acid) nanoparticles encapsulating betamethasone sodium phosphate. Ann Rheum Dis. 2005;64:1132–1136.
  • Mehnert W, Mäder K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2001;47:165–196.
  • Ye J, Wang Q, Zhou X, et al. Injectable actarit-loaded solid lipid nanoparticles as passive targeting therapeutic agents for rheumatoid arthritis. Int J Pharm. 2008;352:273–279.
  • Albuquerque J, Moura CC, Sarmento B, et al. Solid lipid nanoparticles: a potential multifunctional approach towards rheumatoid arthritis theranostics. Molecules. 2015;20:11103–11118.
  • Yoon IS, Park JW, Yoon G. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs): recent advances in drug delivery. J Pharm Investig. 2017;47:453–460.
  • Beloqui A, Solinís MA, Rodríguez-Gascón A, et al. Nanostructured lipid carriers: promising drug delivery systems for future clinics. Nanomedicine. 2016;12:143–161.
  • Nanjwade BK, Bechra HM, Derkar GK, et al. Dendrimers: emerging polymers for drug-delivery systems. Eur J Pharm Sci. 2009;38:185–196.
  • Chandrasekar D, Sistla R, Ahmad FJ, et al. The development of folate-PAMAM dendrimer conjugates for targeted delivery of anti-arthritic drugs and their pharmacokinetics and biodistribution in arthritic rats. Biomaterials 2007;28:504–512.
  • Chandrasekar D, Sistla R, Ahmad FJ, et al. Folate coupled poly(ethyleneglycol) conjugates of anionic poly(amidoamine) dendrimer for inflammatory tissue specific drug delivery. J Biomed Mater Res. 2007;82A:92–103.
  • Bosch X. Dendrimers to treat rheumatoid arthritis. ACS Nano. 2011;5:6779–6785.
  • Shaunak S. Perspective: dendrimer drugs for infection and inflammation. Biochem Biophys Res Commun. 2015;468:435--441.
  • Ghosh P, Han G, De M, et al. Gold nanoparticles in delivery applications. Adv Drug Deliv Rev. 2008;60:1307–1315.
  • Vigderman L, Zubarev ER. Therapeutic platforms based on gold nanoparticles and their covalent conjugates with drug molecules. Adv Drug Deliv Rev. 2013;65:663–676.
  • Jeong EH, Jung G, Hong CA, et al. Gold nanoparticle (AuNP)-based drug delivery and molecular imaging for biomedical applications. Arch Pharm Res. 2014;37:53–59.
  • James LR, Xu ZQ, Sluyter R, et al. An investigation into the interactions of gold nanoparticles and anti-arthritic drugs with macrophages, and their reactivity towards thioredoxin reductase. J Inorg Biochem. 2015;142:28–38.
  • Bhattacharya R, Mukherjee P, Xiong Z, et al. Gold nanoparticles inhibit VEGF165-induced proliferation of HUVEC cells. Nano Lett. 2004;4:2479–2481.
  • Lee SM, Kim HJ, Ha YJ, et al. Targeted chemo-photothermal treatments of rheumatoid arthritis using gold half-shell multifunctional nanoparticles. ACS Nano. 2013;7:50–57.
  • Lee H, Lee MY, Bhang SH, et al. Hyaluronate-gold nanoparticle/tocilizumab complex for the treatment of rheumatoid arthritis. ACS Nano. 2014;8:4790–4798.
  • Kim HJ, Lee SM, Park KH, et al. Drug-loaded gold/iron/gold plasmonic nanoparticles for magnetic targeted chemo-photothermal treatment of rheumatoid arthritis. Biomaterials. 2015;61:95–102.
  • Torchilin VP. Micellar nanocarriers: pharmaceutical perspectives. Pharm Res. 2007;24:1–16.
  • Wang Q, Jiang J, Chen W, et al. Targeted delivery of low-dose dexamethasone using PCL-PEG micelles for effective treatment of rheumatoid arthritis. J Control Release. 2016;230:64–72.
  • Bader RA, Silvers AL, Zhang N. Polysialic acid-based micelles for encapsulation of hydrophobic drugs. Biomacromolecules. 2011;12:314–320.
  • Wilson DR, Zhang N, Silvers AL, et al. Synthesis and evaluation of cyclosporine A-loaded polysialic acid-polycaprolactone micelles for rheumatoid arthritis. . Eur J Pharm Sci. 2014;51:146–156.
  • Crielaard BJ, Rijcken CJ, Quan L, et al. Glucocorticoid-loaded core-cross-linked polymeric micelles with tailorable release kinetics for targeted therapy of rheumatoid arthritis. Angew Chem Int Ed Engl. 2012;51:7254–7258.
  • Li C, Li H, Wang Q, et al. pH-sensitive polymeric micelles for targeted delivery to inflamed joints. J Control Release. 2017;246:133–141.
  • Elzoghby AO, Samy WM, Elgindy NA. Albumin-based nanoparticles as potential controlled release drug delivery systems. J Control Release. 2012;157:168–182.
  • Wunder A, Müller-Ladner U, Stelzer EHK, et al. Albumin-based drug delivery as novel therapeutic approach for rheumatoid arthritis. J Immunol. 2003;170:4793–1801.
  • Kratz F. A clinical update of using albumin as a drug vehicle - a commentary. J Control Release. 2014;190:331–336.
  • Fiehn C, Neumann E, Wunder A, et al. Methotrexate (MTX) and albumin coupled with MTX (MTX-HSA) suppress synovial fibroblast invasion and cartilage degradation in vivo. Ann Rheum Dis. 2004;63:884–886.
  • Fiehn C, Kratz F, Sass G, et al. Targeted drug delivery by in vivo coupling to endogenous albumin: an albumin-binding prodrug of methotrexate (MTX) is better than MTX in the treatment of murine collagen-induced arthritis. Ann Rheum Dis. 2008;67:1188–1191.
  • Říhová B, Kovář M. Immunogenicity and immunomodulatory properties of HPMA-based polymers. Adv Drug Deliv Rev. 2010;62:184–191.
  • Wang D, Miller SC, Sima M, et al. The arthrotropism of macromolecules in adjuvant-induced arthritis rat model: a preliminary study. Pharm Res. 2004;21:1741–1749.
  • Wang D, Miller SC, Liu XM, et al. Novel dexamethasone-HPMA copolymer conjugate and its potential application in treatment of rheumatoid arthritis. Arthritis Res Ther. 2007;9:R2.
  • Liu XM, Quan LD, Tian J, et al. Synthesis and evaluation of a well-defined HPMA copolymer-dexamethasone conjugate for effective treatment of rheumatoid arthritis. Pharm Res. 2008;25:2910–2919.
  • Quan LD, Purdue PE, Liu XM, et al. Development of a macromolecular prodrug for the treatment of inflammatory arthritis: mechanisms involved in arthrotropism and sustained therapeutic efficacy. Arthritis Res Ther. 2010;12:R170.
  • Shin JM, Kim SH, Thambi T, et al. A hyaluronic acid-methotrexate conjugate for targeted therapy of rheumatoid arthritis. Chem Commun (Camb). 2014;50:7632–7635.
  • Thomas TP, Goonewardena SN, Majoros IJ, et al. Folate-targeted nanoparticles show efficacy in the treatment of inflammatory arthritis. Arthritis Rheum. 2011;63:2671–2680.
  • Qi R, Majoros I, Misra AC, et al. Folate receptor-targeted dendrimer-methotrexate conjugate for inflammatory arthritis. J Biomed Nanotechnol. 2015;11:1431–1441.
  • Chen Y, Quan P, Liu XC, et al. Enhancement of skin permeation of flurbiprofen via its transdermal patches using isopulegol decanote (ISO-C10) as an absorption enhancer: pharmacokinetic and pharmacodynamic evaluation. J Pharm Pharmacol. 2015;67:1232–1239.
  • Rahman M, Sharma G, Thakur K, et al. Emerging advances in nanomedicine as a nanoscale pharmacotherapy in rheumatoid arthritis: state of the art. Curr Top Med Chem. 2017;17:162–173.
  • Dolati S, Sadreddini S, Rostamzadeh D, et al. Utilization of nanoparticle technology in rheumatoid arthritis treatment. Biomed Pharmacother. 2016;80:30–41.
  • Gouveia VM, Lima SCA, Nunes C, et al. Non-biologic nanodelivery therapies for rheumatoid arthritis. J Biomed Nanotechnol. 2015;11:1701–1721.
  • Mitragotri S, Yoo JW. Designing micro- and nano-particles for treating rheumatoid arthritis. Arch Pharm Res. 2011;34:1887–1897.
  • Ulbrich W, Lamprecht A. Targeted drug-delivery approaches by nanoparticulate carriers in the therapy of inflammatory diseases. J R Soc Interface. 2010;7:S55–S66.
  • Pham CTN. Nanotherapeutic approaches for the treatment of rheumatoid arthritis. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2011;3:607–619.
  • Muro S. Challenges in design and characterization of ligand-targeted drug delivery systems. J Control Release. 2012;164:125–137.
  • Alam M, Han HS, Sung S, et al. Endogenous inspired biomineral-installed hyaluronan nanoparticles as pH-responsive carrier of methotrexate for rheumatoid arthritis. J Control Release. 2017;252:62–72.
  • Seetharaman G, Kallar AR, Vijayan VM, et al. Design, preparation and characterization of pH-responsive prodrug micelles with hydrolyzable anhydride linkages for controlled drug delivery. J Colloid Interf Sci. 2017;492:61–72.
  • Jagur-Grodzinski J. Polymers for targeted and/or sustained drug delivery. Polym Adv Technol. 2009;20:595–606.
  • Szelenyi I. Nanomedicine: evolutionary and revolutionary developments in the treatment of certain inflammatory diseases. Inflamm Res. 2012;61:1–9.
  • Baalousha M, Lead JR. Nanoparticle dispersity in toxicology. Nat Nanotechnol. 2013;8:308–309.
  • Hughes C, Nissim A. Progress and clinical potential of antibody-targeted therapy for arthritic damage. Expert Rev Proteomics. 2016;13:539–543.
  • Rein P, Mueller RB. Treatment with biologicals in rheumatoid arthritis: an overview. Rheumatol Ther. 2017;4:247–261.
  • Braun J, Kay J. The safety of emerging biosimilar drugs for the treatment of rheumatoid arthritis. Expert Opin Drug Saf. 2017;16:289–302.
  • Škalko-Basnet N. Biologics: the role of delivery systems in improved therapy. Biologics. 2014;8:107–114.
  • Jung YS, Park W, Na K. Temperature-modulated noncovalent interaction controllable complex for the long-term delivery of etanercept to treat rheumatoid arthritis. J Control Release. 2013;171:143–151.
  • Li XY, Li H, Zhang Y, et al. Development of albumin coupled, cholesterol stabilized, lipid nanoemulsion of methotrexate, and TNF-α inhibitor for improved in vivo efficacy against rheumatoid arthritis. AAPS PharmSciTech. 2017;18:2774–2782.
  • Batrakova EV, Gendelman HE, Kabanov AV. Cell-mediated drug delivery. Expert Opin Drug Deliv. 2011;8:415–433.
  • Srivastava S, Singh D, Patel S, et al. Novel carters and targeted approaches: way out for rheumatoid arthritis quandrum. J Drug Deliv Sci Tec. 2017;40:125–135.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.