853
Views
19
CrossRef citations to date
0
Altmetric
Review of a Lifetime

Drug delivery across length scales

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 229-243 | Received 05 Feb 2018, Accepted 05 Feb 2018, Published online: 20 Feb 2018

References

  • Newman DJ, Cragg GM. Natural products as sources of new drugs over the last 25 years. J Nat Prod. 2007;70:461–477.
  • Muralidhara BK, Baid R, Bishop SM, et al. Critical considerations for developing nucleic acid macromolecule based drug products. Drug Discov Today. 2016;21:430–444.
  • Sharma C, Awasthi SK. Versatility of peptide nucleic acids (PNAs): role in chemical biology, drug discovery, and origins of life. Chem Biol Drug Des. 2017;89:16–37.
  • Kimchi-Sarfaty C, Schiller T, Hamasaki-Katagiri N, et al. Building better drugs: developing and regulating engineered therapeutic proteins. Trends Pharmacol Sci. 2013;34:534–548.
  • Eckstein P. Mechanisms of action intra-uterine contraceptive devices in women and other mammals. Br Med Bull. 1970;26:52–59.
  • Sutradhar KB, Sumi CD. Implantable microchip: the futuristic controlled drug delivery system. Drug Deliv. 2016;23:1–11.
  • Fox CB, Kim J, Le LV, et al. Micro/nanofabricated platforms for oral drug delivery. J Control Release. 2015;219:431.
  • Goffredo R, Accoto D, Guglielmelli E. Swallowable smart pills for local drug delivery: present status and future perspectives. Expert Rev Med Devices. 2015;12:585.
  • Grayson ACR, Choi IS, Tyler BM, et al. Multi-pulse drug delivery from a resorbable polymeric microchip device. Nature Mater. 2003;2:767.
  • Kearney CJ, Mooney DJ. Macroscale delivery systems for molecular and cellular payloads. Nat Mater. 2013;12:1004.
  • McHugh KJ, Guarecuco R, Langer R, et al. Single-injection vaccines: progress, challenges, and opportunities. J Control Release. 2015;219:596.
  • Franzesi GT, Ni B, Ling YB, et al. A controlled-release strategy for the generation of cross-linked hydrogel microstructures. J Am Chem Soc. 2006;128:15064.
  • Ganji F, Vasheghani-Farahani E. Hydrogels in controlled drug delivery systems. Iran Polym J. 2009;18:63–88.
  • Reeves ARD, Spiller KL, Freytes DO, et al. Controlled release of cytokines using silk-biomaterials for macrophage polarization. Biomaterials. 2015;73:272.
  • Rodriguez Villanueva J, Bravo-Osuna I, Herrero-Vanrell R, et al. Optimising the controlled release of dexamethasone from a new generation of PLGA-based microspheres intended for intravitreal administration. Eur J Pharm Sci. 2016;92:287.
  • Guo X, Cui F, Xing Y, et al. Investigation of a new injectable thermosensitive hydrogel loading solid lipid nanoparticles. Pharmazie. 2011;66:948–952.
  • Simon-Yarza T, Formiga FR, Tamayo E, et al. PEGylated-PLGA microparticles containing VEGF for long term drug delivery. Int J Pharm. 2013;440:13.
  • Deng YH, Wang CC, Shen XZ, et al. Preparation, characterization, and application of multistimuli-responsive microspheres with fluorescence-labeled magnetic cores and thermoresponsive shells. Chemistry. 2005;11:6006.
  • Li H, Go G, Ko SY, et al. Selective microrobot control using a thermally responsive microclamper for microparticle manipulation. Smart Mater Struct. 2016;25:9.
  • Wanakule P, Liu GW, Fleury AT, et al. Nano-inside-micro: disease-responsive microgels with encapsulated nanoparticles for intracellular drug delivery to the deep lung. J Control Release. 2012;162:429.
  • White EM, Yatvin J, Grubbs JB, et al. Advances in smart materials: stimuli-responsive hydrogel thin films. J Polym Sci. 2013;51:1084.
  • Zorzetto L, Brambilla P, Marcello E, et al. From micro- to nanostructured implantable device for local anesthetic delivery. Int J Nanomedicine. 2016;11:2695.
  • Blackshear PJ, Rohde TD, Prosl F, et al. The implantable infusion pump: a new concept in drug delivery. Med Prog Technol. 1979;6:149–161.
  • Theeuwes F, Yum SI. Principles of the design and operation of generic osmotic pumps for the delivery of semisolid or liquid drug formulations. Ann Biomed Eng. 1976;4:343.
  • Schneider M, Windbergs M, Daum N, et al. Crossing biological barriers for advanced drug delivery. Eur J Pharm Biopharm. 2013;84:239.
  • Avery M, Liu D. Bringing smart pills to market: FDA regulation of ingestible drug/device combination products. Food Drug Law J. 2011;66:329.
  • van der Schaar PJ, Dijksman F, Shimizu J, et al. First in human study with a novel ingestible electronic drug delivery and monitoring device: the Intellicap. Gastroenterology. 2011;140:S766.
  • van der Schaar PJ, Dijksman JF, Broekhuizen-de Gast H, et al. A novel ingestible electronic drug delivery and monitoring device. Gastrointest Endosc. 2013;78:520.
  • Barry BW. Novel mechanisms and devices to enable successful transdermal drug delivery. Eur J Pharm Sci. 2001;14:101.
  • Caffarel-Salvador E, Donnelly RF. Transdermal drug delivery mediated by microneedle arrays: innovations and barriers to success. Curr Pharm Des. 2016;22:1105.
  • Garg NK, Singh B, Tyagi RK, et al. Effective transdermal delivery of methotrexate through nanostructured lipid carriers in an experimentally induced arthritis model. Colloids Surf B Biointerfaces. 2016;147:17.
  • Park CH, Tijing LD, Kim CS, et al. Needle-free transdermal delivery using PLGA nanoparticles: effect of particle size, injection pressure and syringe orifice diameter. Colloids Surf B Biointerfaces. 2014;123:710.
  • Singh BN, Kim KH. Floating drug delivery systems: an approach to oral controlled drug delivery via gastric retention. J Control Release. 2000;63:235.
  • Rujivipat S, Bodmeier R. Improved drug delivery to the lower intestinal tract with tablets compression-coated with enteric/nonenteric polymer powder blends. Eur J Pharm Biopharm. 2010;76:486.
  • Zhang SY, Bellinger AM, Glettig DL, et al. A pH-responsive supramolecular polymer gel as an enteric elastomer for use in gastric devices. Nat Mater. 2015;14:1065.
  • Dahlgren D, Roos C, Lundqvist A, et al. Regional intestinal permeability of three model drugs in human. Mol Pharmaceutics. 2016;13:3013.
  • Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26:1261.
  • Chetkowski RJ, Meldrum DR, Steingold KA, et al. Biologic effects of transdermal estradiol. N Engl J Med. 1986;314:1615.
  • Davis SR, Dinatale I, Rivera-Woll L, et al. Postmenopausal hormone therapy: from monkey glands to transdermal patches. J Endocrinol. 2005;185:207.
  • Prausnitz MR, Mitragotri S, Langer R. Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov. 2004;3:115.
  • Wadgave U, Nagesh L. Nicotine replacement therapy: an overview. Int J Health Sci (Qassim). 2016;10:425.
  • Polaneczky M, Slap G, Forke C, et al. The use of levonorgestrel implants (norplant) for contraception in adolescent mothers. N Engl J Med. 1994;331:1201.
  • Shoupe D, Mishell DR. Norplant: subdermal implant system for long-term contraception. Am J Obstet Gynecol. 1989;160:1286–1292.
  • Sivin I. International experience with NORPLANT and NORPLANT-2 contraceptives. Stud Fam Plann. 1988;19:81.
  • Brem H, Mahaley S, Vick NA, et al. Interstitial chemotherapy with drug polymer implants for the treatment of recurrent gliomas. J Neurosurg. 1991;74:441.
  • Chew SA, Danti S. Biomaterial-based implantable devices for cancer therapy. Adv Healthcare Mater. 2017;6:22.
  • Gollwitzer H, Ibrahim K, Meyer H, et al. Antibacterial poly(D,L-lactic acid) coating of medical implants using a biodegradable drug delivery technology. J Antimicrob Chemother. 2003;51:585.
  • Lee SS, Hughes P, Ross AD, et al. Biodegradable implants for sustained drug release in the eye. Pharm Res. 2010;27:2043.
  • Ochoa M, Mousoulis C, Ziaie B. Polymeric microdevices for transdermal and subcutaneous drug delivery. Adv Drug Deliv Rev. 2012;64:1603.
  • Abolmaali SS, Tamaddon AM, Dinarvand R. Nano-hydrogels of methoxy polyethylene glycol-grafted branched polyethyleneimine via biodegradable cross-linking of Zn2+-ionomer micelle template. J Nanopart Res. 2013;15:2134.
  • Calo E, Khutoryanskiy VV. Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J. 2015;65:252.
  • Bory C, Lege P, Chalencon E, et al. Evaluation of iPrecio — dual channel pump: a safety pharmacology study case in the Gottingen Minipig. J Pharm Toxicol Method. 2014;70:349.
  • Tan T, Watts SW, Davis RP. Drug delivery: enabling technology for drug discovery and development. iPRECIO micro infusion pump: programmable, refillable, and implantable. Front Pharmacol. 2011;2:44.
  • Albright AL, Awaad Y, Muhonen M, et al. Performance and complications associated with the synchromed 10-ml infusion pump for intrathecal baclofen administration in children. J Neurosurg. 2004;101:64.
  • Gilmartin R, Bruce D, Storrs BB, et al. Intrathecal baclofen for management of spastic cerebral palsy: multicenter trial. J Child Neurol. 2000;15:71.
  • Baert L, Schueller L, Tardy Y, et al. Development of an implantable infusion pump for sustained anti-HIV drug administration. Int J Pharm. 2008;355:38.
  • Ethans KD, Schryvers OI, Nance PW, et al. Intrathecal drug therapy using the Codman model 3000 constant flow implantable infusion pumps: experience with 17 cases. Spinal Cord. 2005;43:214.
  • Kemeny N, Seiter K, Niedzwiecki D, et al. A randomized trial of intrahepatic infusion of fluorodeoxyuridine with dexamethasone versus fluorodeoxyuridine alone in the treatment of metastatic colorectal cancer. Cancer. 1992;69:327.
  • Selam JL, Micossi P, Dunn FL, et al. Clinical trial of programmable implantable insulin pump for type I diabetes. Diabetes Care. 1992;15:877.
  • Anderson SM, Raghinaru D, Pinsker JE, et al. Multinational home use of closed-loop control is safe and effective. Diabetes Care. 2016;39:1143.
  • Pickup J, Mattock M, Kerry S. Glycaemic control with continuous subcutaneous insulin infusion compared with intensive insulin injections in patients with type 1 diabetes: meta-analysis of randomised controlled trials. BMJ. 2002;324:705.
  • Blauw H, van Bon AC, Koops R, et al. Performance and safety of an integrated bihormonal artificial pancreas for fully automated glucose control at home. Diabetes Obes Metab. 2016;18:671.
  • Ramotowska A, Szypowska A. Bolus calculator and wirelessly communicated blood glucose measurement effectively reduce hypoglycaemia in type 1 diabetic children – randomized controlled trial. Diabetes Metab Res Rev. 2014;30:146.
  • Kovatchev B, Cheng PY, Anderson SM, et al. Feasibility of long-term closed-loop control: a multicenter 6-month trial of 24/7 automated insulin delivery. Diabetes Technol Ther. 2017;19:18–24.
  • Bottros MM, Christo PJ. Current perspectives on intrathecal drug delivery. J Pain Res. 2014;7:615.
  • Brache V, Payan LJ, Faundes A. Current status of contraceptive vaginal rings. Contraception. 2013;87:264.
  • Huang YM, Merkatz RB, Hillier SL, et al. Effects of a one year reusable contraceptive vaginal ring on vaginal microflora and the risk of vaginal infection: an open-label prospective evaluation. PLoS One. 2015;10:e0134460.
  • Hubacher D, Lara-Ricalde R, Taylor DJ, et al. Use of copper intrauterine devices and the risk of tubal infertility among nulligravid women. N Engl J Med. 2001;345:561.
  • Nakazawa G, Otsuka F, Nakano M, et al. The pathology of neoatherosclerosis in human coronary implants bare-metal and drug-eluting stents. J Am Coll Cardiol. 2011;57:1314.
  • Jaworska J, Jelonek K, Sobota M, et al. Shape-memory bioresorbable terpolymer composite with antirestenotic drug. J Appl Polym Sci. 2015;132:41902.
  • Katz G, Harchandani B, Shah B. Drug-eluting stents: the past, present, and future. Curr Atheroscler Rep. 2015;17:485.
  • Wache HM, Tartakowska DJ, Hentrich A, et al. Development of a polymer stent with shape memory effect as a drug delivery system. J Mater Sci Mater Med. 2003;14:109.
  • Westphal M, Hilt DC, Bortey E, et al. A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro Oncol. 2003;5:79.
  • Westphal M, Ram Z, Riddle V, et al. Gliadel® wafer in initial surgery for malignant glioma: long-term follow-up of a multicenter controlled trial. Acta Neurochir (Wien). 2006;148:269.
  • Saher O, Ghorab DM, Mursi NM. Levofloxacin hemihydrate ocular semi-sponges for topical treatment of bacterial conjunctivitis: formulation and in-vitro/in-vivo characterization. J Drug Deliv Sci Technol. 2016;31:22.
  • Gulsen D, Chauhan A. Ophthalmic drug delivery through contact lenses. Invest Ophthalmol Vis Sci. 2004;45:2342.
  • Jain MR. Drug delivery through soft contact lenses. Br J Ophthalmol. 1988;72:150.
  • Kim J, Conway A, Chauhan A. Extended delivery of ophthalmic drugs by silicone hydrogel contact lenses. Biomaterials. 2008;29:2259.
  • Dong LC, Hoffman AS. A novel approach for preparation of pH-sensitive hydrogels for enteric drug delivery. J Control Release. 1991;15:141.
  • Goyanes A, Fina F, Martorana A, et al. Development of modified release 3D printed tablets (printlets) with pharmaceutical excipients using additive manufacturing. Int J Pharm. 2017;527:21.
  • Park HJ, Jung HJ, Ho MJ, et al. Colon-targeted delivery of solubilized bisacodyl by doubly enteric-coated multiple-unit tablet. Eur J Pharm Sci. 2017;102:172.
  • Kim J, Li WA, Choi Y, et al. Injectable, spontaneously assembling, inorganic scaffolds modulate immune cells in vivo and increase vaccine efficacy. Nat Biotechnol. 2015;33:64.
  • Kim J, Mooney DJ. In vivo modulation of dendritic cells by engineered materials: towards new cancer vaccines. Nano Today. 2011;6:466.
  • Li WA, Mooney DJ. Materials based tumor immunotherapy vaccines. Curr Opin Immunol. 2013;25:238.
  • Dobnig H, Turner RT. The effects of programmed administration of human parathyroid hormone fragment (1–34) on bone histomorphometry and serum chemistry in rats. Endocrinology. 1997;138:4607.
  • Waterman KC, Goeken GS, Konagurthu S, et al. Osmotic capsules: a universal oral, controlled-release drug delivery dosage form. J Control Release. 2011;152:264.
  • Arya J, Prausnitz MR. Microneedle patches for vaccination in developing countries. J Control Release. 2016;240:135.
  • Baek SH, Shin JH, Kim YC. Drug-coated microneedles for rapid and painless local anesthesia. Biomed Microdevices. 2017;19:2.
  • Chandrasekhar S, Iyer LK, Panchal JP, et al. Microarrays and microneedle arrays for delivery of peptides, proteins, vaccines and other applications. Expert Opin Drug Deliv. 2013;10:1155.
  • Ma GJ, Wu CW. Microneedle, bio-microneedle and bio-inspired microneedle: a review. J Control Release. 2017;251:11.
  • Yu JC, Zhang YQ, Ye YQ, et al. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc Natl Acad Sci USA. 2015;112:8260.
  • Ferris RL, Lotze MT, Leong SPL, et al. Lymphatics, lymph nodes and the immune system: barriers and gateways for cancer spread. Clin Exp Metastasis. 2012;29:729.
  • Margaris KN, Black RA. Modelling the lymphatic system: challenges and opportunities. J R Soc Interface. 2012;9:601.
  • Potter RF, Groom AC. Capillary diameter and geometry in cardiac and skeletal muscle studied by means of corrosion casts. Microvasc Res. 1983;25:68.
  • Santini JT, Cima MJ, Langer R. A controlled-release microchip. Nature. 1999;397:335.
  • Elman NM, Duc HLH, Cima MJ. An implantable MEMS drug delivery device for rapid delivery in ambulatory emergency care. Biomed Microdevices. 2009;11:625.
  • Goffredo R, Pecora A, Maiolo L, et al. A swallowable smart pill for local drug delivery. J Microelectromech Syst. 2016;25:362–370.
  • Lo R, Li PY, Saati S, et al. A passive MEMS drug delivery pump for treatment of ocular diseases. Biomed Microdevices. 2009;11:959.
  • Meng E, Hoang T. MEMS-enabled implantable drug infusion pumps for laboratory animal research, preclinical, and clinical applications. Adv Drug Deliv Rev. 2012;64:1628.
  • Nguyen CTC. MEMS technology for timing and frequency control. IEEE Trans Ultrason Ferroelectr Freq Control. 2007;54:251.
  • Nguyen CTC. Frequency-selective MEMS for miniaturized low-power communication devices. IEEE Trans Microwave Theory Tech. 1999;47:1486.
  • Ruhhammer J, Zens M, Goldschmidtboeing F, et al. Highly elastic conductive polymeric MEMS. Sci Technol Adv Mater. 2015;16:015003.
  • Tsai NC, Sue CY. Review of MEMS-based drug delivery and dosing systems. Sens Actuators A Phys. 2007;134:555.
  • Zordan E, Amirouche F. Design and analysis of a double superimposed chamber valveless MEMS micropump. Proc Inst Mech Eng H. 2007;221:143.
  • Huesgen T, Lenk G, Albrecht B, et al. Optimization and characterization of wafer-level adhesive bonding with patterned dry-film photoresist for 3D MEMS integration. Sens Actuators A Phys. 2010;162:137.
  • Johnson DG, Borkholder DA. Towards an implantable, low flow micropump that uses no power in the blocked-flow state. Micromachines. 2016;7:16.
  • Nguyen NT, Huang XY, Chuan TK. MEMS-micropumps: a review. J Fluids Eng. 2002;124:384.
  • Pirmoradi FN, Jackson JK, Burt HM, et al. On-demand controlled release of docetaxel from a battery-less MEMS drug delivery device. Lab Chip. 2011;11:2744.
  • Zainal MA, Ahmad A, Ali MSM. Frequency-controlled wireless shape memory polymer microactuator for drug delivery application. Biomed Microdevices. 2017;19:10.
  • Gill HS, Prausnitz MR. Does needle size matter? J Diabetes Sci Technol. 2007;1:725.
  • Jalil RU. Biodegradable poly(lactic acid) and poly (lactide-co-glycolide) polymers in sustained drug delivery. Drug Dev Ind Pharm. 1990;16:2353.
  • Gong C, Qi T, Wei X, et al. Thermosensitive polymeric hydrogels as drug delivery systems. Curr Med Chem. 2013;20:79.
  • Kurisawa M, Chung JE, Yang YY, et al. Injectable biodegradable hydrogels composed of hyaluronic acid-tyramine conjugates for drug delivery and tissue engineering. Chem Commun. 2005;(34):4312.
  • Sun JEP, Stewart B, Litan A, et al. Sustained release of active chemotherapeutics from injectable-solid β-hairpin peptide hydrogel. Biomater Sci. 2016;4:839.
  • Yan CQ, Altunbas A, Yucel T, et al. Injectable solid hydrogel: mechanism of shear-thinning and immediate recovery of injectable β-hairpin peptide hydrogels. Soft Matter. 2010;6:5143.
  • Ye HY, Owh C, Jiang S, et al. A thixotropic polyglycerol sebacate-based saupramolecular hydrogel as an injectable drug delivery matrix. Polymers. 2016;8:130.
  • Brudno Y, Mooney DJ. On-demand drug delivery from local depots. J Control Release. 2015;219:8.
  • Brudno Y, Silva EA, Kearney CJ, et al. Refilling drug delivery depots through the blood. Proc Natl Acad Sci USA. 2014;111:12722.
  • Acharya AP, Lewis JS, Keselowsky BG. Combinatorial co-encapsulation of hydrophobic molecules in poly(lactide-co-glycolide) microparticles. Biomaterials. 2013;34:3422.
  • Rafati A, Boussahel A, Shakesheff KM, et al. Chemical and spatial analysis of protein loaded PLGA microspheres for drug delivery applications. J Control Release. 2012;162:321.
  • Rahimian S, Fransen MF, Kleinovink JW, et al. Particulate systems based on poly(lactic-co-glycolic)acid (pLGA) for immunotherapy of cancer. Curr Pharm Des. 2015;21:4201.
  • Wang NX, Bazdar DA, Sieg SF, et al. Microparticle delivery of interleukin-7 to boost T-cell proliferation and survival. Biotechnol Bioeng. 2012;109:1835.
  • White LJ, Kirby GTS, Cox HC, et al. Accelerating protein release from microparticles for regenerative medicine applications. Mater Sci Eng C Mater Biol Appl. 2013;33:2578.
  • Xia YJ, Pack DW. Uniform biodegradable microparticle systems for controlled release. Chem Eng Sci. 2015;125:129.
  • Goldray D, Weisman Y, Jaccard N, et al. Decreased bone density in elderly men treated with the gonadotropin-releasing hormone agonist decapeptyl (D-Trp6-GnRH). J Clin Endocrinol Metab. 1993;76:288.
  • Parmar H, Rustin G, Lightman SL, et al. Response to D-Trp-6-luteinising hormone releasing hormone (Decapeptyl) microcapsules in advanced ovarian cancer. Br Med J (Clin Res Ed). 1988;296:1229.
  • De Leede LGJ, Humphries JE, Bechet AC, et al. Novel controlled-release Lemna-derived IFN-alpha2b (Locteron): pharmacokinetics, pharmacodynamics, and tolerability in a phase I clinical trial. J Interferon Cytokine Res. 2008;28:113.
  • Tzeng SY, Guarecuco R, McHugh KJ, et al. Thermostabilization of inactivated polio vaccine in PLGA-based microspheres for pulsatile release. J Control Release. 2016;233:101.
  • Farra R, Sheppard NF, McCabe L, et al. First-in-human testing of a wirelessly controlled drug delivery microchip. Science Translational Medicine. 2012;4:122ra21.
  • Jonas O, Calligaris D, Methuku KR, et al. First in vivo testing of compounds targeting group 3 medulloblastomas using an implantable microdevice as a new paradigm for drug development. J Biomed Nanotechnol. 2016;12:1297.
  • Jonas O, Landry HM, Fuller JE, et al. An implantable microdevice to perform high-throughput in vivo drug sensitivity testing in tumors. Sci Transl Med. 2015;7:284ra57.
  • Novartis acquires Nektar’s pulmonary drug delivery business. Nat Rev Drug Discov. 2008;7:964.
  • Champion JA, Katare YK, Mitragotri S. Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J Control Release. 2007;121:3–9.
  • Mandal S, Hammink R, Tel J, et al. Polymer-based synthetic dendritic cells for tailoring robust and multifunctional T cell responses. ACS Chem Biol. 2015;10:485.
  • Meyer RA, Sunshine JC, Green JJ. Biomimetic particles as therapeutics. Trends Biotechnol. 2015;33:514.
  • Perica K, Kosmides AK, Schneck JP. Linking form to function: biophysical aspects of artificial antigen presenting cell design. Biochim Biophys Acta. 2015;1853:781.
  • Veiseh O, Doloff JC, Ma M, et al. Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat Mater. 2015;14:643.
  • Bencherif SA, Sands RW, Bhatta D, et al. Injectable preformed scaffolds with shape-memory properties. Proc Natl Acad Sci USA. 2012;109:19590.
  • Sun L, Huang WM, Ding Z, et al. Stimulus-responsive shape memory materials: a review. Mater Des. 2012;33:577.
  • Wang L, Shansky J, Borselli C, et al. Design and fabrication of a biodegradable, covalently crosslinked shape-memory alginate scaffold for cell and growth factor delivery. Tissue Eng Part A. 2012;18:2000.
  • Chirra HD, Desai TA. Multi-reservoir bioadhesive microdevices for independent rate-controlled delivery of multiple drugs. Small. 2012;8:3839.
  • Wischke C, Zimmermann J, Wessinger B, et al. Poly(I:C) coated PLGA microparticles induce dendritic cell maturation. Int J Pharm. 2009;365:61.
  • Rudd PM, Wormald MR, Stanfield RL, et al. Roles for glycosylation of cell surface receptors involved in cellular immune recognition. J Mol Biol. 1999;293:351.
  • Liang HF, Chen CT, Chen SC, et al. Paclitaxel-loaded poly(γ-glutamic acid)-poly(lactide) nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Biomaterials. 2006;27:2051.
  • Lewis JS, Dolgova NV, Zhang Y, et al. A combination dual-sized microparticle system modulates dendritic cells and prevents type 1 diabetes in prediabetic NOD mice. Clin Immunol. 2015;160:90.
  • Yoon YM, Lewis JS, Carstens MR, et al. A combination hydrogel microparticle-based vaccine prevents type 1 diabetes in non-obese diabetic mice. Sci Rep. 2015;5:13155.
  • Bull JL. The application of microbubbles for targeted drug delivery. Expert Opin Drug Deliv. 2007;4:475.
  • Ren ST, Liao YR, Kang XN, et al. The antitumor effect of a new docetaxel-loaded microbubble combined with low-frequency ultrasound in vitro: preparation and parameter analysis. Pharm Res. 2013;30:1574.
  • Wu SZ, Li L, Wang G, et al. Ultrasound-targeted stromal cell-derived factor-1-loaded microbubble destruction promotes mesenchymal stem cell homing to kidneys in diabetic nephropathy rats. Int J Nanomedicine. 2014;9:5639.
  • Kost J, Leong K, Langer R. Ultrasound-enhanced polymer degradation and release of incorporated substances. Proc Natl Acad Sci USA. 1989;86:7663.
  • Mitragotri S, Blankschtein D, Langer R. Ultrasound-mediated transdermal protein delivery. Science. 1995;269:850.
  • The different dimensions of nanotechnology. Nature Nanotechnol. 2009;4:135.
  • Sheikh Z, Brooks PJ, Barzilay O, et al. Macrophages, foreign body giant cells and their response to implantable biomaterials. Materials (Basel). 2015;8:5671.
  • Kaczmarek JC, Patel AK, Kauffman KJ, et al. Polymer-lipid nanoparticles for systemic delivery of mRNA to the lungs. Angew Chem Int Ed Engl. 2016;55:13808.
  • Zhou DZ, Gao YS, Ahern JO, et al. Development of branched poly(5-amino-1-pentanol-co-1,4-butanediol diacrylate) with high gene transfection potency across diverse cell types. Acs Appl Mater Interfaces. 2016;8:34218.
  • Felnerova D, Viret JF, Gluck R, et al. Liposomes and virosomes as delivery systems for antigens, nucleic acids and drugs. Curr Opin Biotechnol. 2004;15:518.
  • Boswell GW, Bekersky I, Buell D, et al. Toxicological profile and pharmacokinetics of a unilamellar liposomal vesicle formulation of amphotericin B in rats. Antimicrob Agents Chemother. 1998;42:263.
  • Boswell GW, Buell D, Bekersky I. AmBisome (liposomal amphotericin B): a comparative review. J Clin Pharmacol. 1998;38:583.
  • Walsh TJ, Yeldandi V, McEvoy M, et al. Safety, tolerance, and pharmacokinetics of a small unilamellar liposomal formulation of amphotericin B (AmBisome) in neutropenic patients. Antimicrob Agents Chemother. 1998;42:2391.
  • Sheu MT, Chen SY, Chen LC, et al. Influence of micelle solubilization by tocopheryl polyethylene glycol succinate (TPGS) on solubility enhancement and percutaneous penetration of estradiol. J Control Release. 2003;88:355.
  • Soo PL, Lovric J, Davidson P, et al. Polycaprolactone-block-poly(ethylene oxide) micelles: a nanodelivery system for 17β-estradiol. Mol Pharm. 2005;2:519.
  • Chiechi LM. Estrasorb. IDrugs. 2004;7:860.
  • Ishida T, Atobe K, Wang XY, et al. Accelerated blood clearance of PEGylated liposomes upon repeated injections: effect of doxorubicin-encapsulation and high-dose first injection. J Control Release. 2006;115:251.
  • Nellis DF, Giardina SL, Janini GM, et al. Preclinical manufacture of anti-HER2 liposome-inserting, scFv-PEG-lipid conjugate. 2. Conjugate micelle identity, purity, stability, and potency analysis. Biotechnol Prog. 2005;21:221.
  • Sekine Y, Moritani Y, Ikeda-Fukazawa T, et al. A hybrid hydrogel biomaterial by nanogel engineering: bottom-up design with nanogel and liposome building blocks to develop a multidrug delivery system. Adv Healthc Mater. 2012;1:722.
  • Zhang CY, Yang YQ, Huang TX, et al. Self-assembled pH-responsive MPEG-b-(PLA-co-PAE) block copolymer micelles for anticancer drug delivery. Biomaterials. 2012;33:6273.
  • Ganson NJ, Povsic TJ, Sullenger BA, et al. Pre-existing anti-polyethylene glycol antibody linked to first-exposure allergic reactions to pegnivacogin, a PEGylated RNA aptamer. J Allergy Clin Immunol. 2016;137:1610.
  • Chiappini C, De Rosa E, Martinez JO, et al. Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization. Nat Mater. 2015;14:532.
  • Serda RE, Godin B, Blanco E, et al. Multi-stage delivery nano-particle systems for therapeutic applications. Biochim Biophys Acta. 2011;1810:317.
  • Shalek AK, Robinson JT, Karp ES, et al. Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells. Proc Natl Acad Sci USA. 2010;107:1870.
  • Fischer KE, Aleman BJ, Tao SL, et al. Biomimetic nanowire coatings for next generation adhesive drug delivery systems. Nano Lett. 2009;9:716.
  • Brammer KS, Choi C, Oh S, et al. Antibiofouling, sustained antibiotic release by Si nanowire templates. Nano Lett. 2009;9:3570.
  • Uskokovic V, Lee PP, Walsh LA, et al. PEGylated silicon nanowire coated silica microparticles for drug delivery across intestinal epithelium. Biomaterials. 2012;33:1663.
  • Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol. 2005;9:674.
  • Fadel TR, Sharp FA, Vudattu N, et al. A carbon nanotube–polymer composite for T-cell therapy. Nat Nanotechnol. 2014;9:639.
  • Li DD, Kordalivand N, Fransen MF, et al. Reduction-sensitive dextran nanogels aimed for intracellular delivery of antigens. Adv Funct Mater. 2015;25:2993.
  • Naeye B, Raemdonck K, Remaut K, et al. PEGylation of biodegradable dextran nanogels for siRNA delivery. Eur J Pharm Sci. 2010;40:342.
  • Raemdonck K, Demeester J, De Smedt S. Advanced nanogel engineering for drug delivery. Soft Matter. 2009;5:707.
  • Van Thienen TG, Demeester JD, Smedt SC. Screening poly(ethyleneglycol) micro- and nanogels for drug delivery purposes. Int J Pharm. 2008;351:174.
  • Kong IG, Sato A, Yuki Y, et al. Nanogel-based PspA intranasal vaccine prevents invasive disease and nasal colonization by Streptococcus pneumoniae. Infect Immun. 2013;81:1625.
  • Nochi T, Yuki Y, Takahashi H, et al. Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines. Nature Mater. 2010;9:572–578.
  • Yarmolenko PS, Zhao YL, Landon C, et al. Comparative effects of thermosensitive doxorubicin-containing liposomes and hyperthermia in human and murine tumours. Int J Hyperthermia. 2010;26:485.
  • Blinder KJ, Blumenkranz MS, Bressler NM, et al. Verteporfin therapy of subfoveal choroidal neovascularization in pathologic myopia: 2-year results of a randomized clinical trial--VIP report no. 3. Ophthalmology. 2003;110:667.
  • Spaide RF, Sorenson J, Maranan L. Combined photodynamic therapy with verteporfin and intravitreal triamcinolone acetonide for choroidal neovascularization. Ophthalmology. 2003;110:1517.
  • Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46:6387.
  • Ogris E, Mudrak I, Mak E, et al. Catalytically inactive protein phosphatase 2A can bind to polyomavirus middle tumor antigen and support complex formation with pp60(c-src). J Virol. 1999;73:7390.
  • Ogris M, Brunner S, Schuller S, et al. PEGylated DNA/transferrin–PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther. 1999;6:595.
  • Kreuter J, Shamenkov D, Petrov V, et al. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J Drug Target. 2002;10:317.
  • Akinc A, Querbes W, De SM, et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Molecular Therapy. 2010;18:1357.
  • Semple SC, Akinc A, Chen JX, et al. Rational design of cationic lipids for siRNA delivery. Nat Biotechnol. 2010;28:172–176.
  • Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33:941–951.
  • Rodriguez PL, Harada T, Christian DA, et al. Minimal “Self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science. 2013;339:971–975.
  • Daniels-Wells TR, Penichet ML. Transferrin receptor 1: a target for antibody-mediated cancer therapy. Immunotherapy. 2016;8:991.
  • Nobs L, Buchegger F, Gurny R, et al. Biodegradable nanoparticles for direct or two-step tumor immunotargeting. Bioconjug Chem. 2006;17:139–145.
  • Desai N, Trieu V, Yao Z. Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin Cancer Res. 2006;12:3869.
  • Desai NP, Trieu V, Hwang LY, et al. Improved effectiveness of nanoparticle albumin-bound (nab) paclitaxel versus polysorbate-based docetaxel in multiple xenografts as a function of HER2 and SPARC status. Anticancer Drugs. 2008;19:899–909.
  • Ng SSW, Sparreboom A, Shaked Y, et al. Influence of formulation vehicle on metronomic taxane chemotherapy: albumin-bound versus cremophor EL-based paclitaxel. Clin Cancer Res. 2006;12:4331–4338.
  • Karagiannis ED, Urbanska AM, Sahay G, et al. Rational design of a biomimetic cell penetrating peptide library. Acs Nano. 2013;7:8616–8626.
  • LaVan DA, McGuire T, Langer R. Small-scale systems for in vivo drug delivery. Nat Biotechnol. 2003;21:1184–1191.
  • Bellinger AM, Jafari M, Grant TM, et al. Oral, ultra-long-lasting drug delivery: application toward malaria elimination goals. Sci Transl Med. 2016;8:365ra157.
  • Di Mario C, Griffiths H, Goktekin O, et al. Drug‐eluting bioabsorbable magnesium stent. J Interv Cardiol. 2004;17:391–395.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.