1,002
Views
69
CrossRef citations to date
0
Altmetric
Review Article

Targeted cancer drug delivery with aptamer-functionalized polymeric nanoparticles

, , , &
Pages 292-299 | Received 19 Mar 2018, Accepted 19 Jun 2018, Published online: 26 Jul 2018

References

  • Smith JE, Medley CD, Tang Z, et al. Aptamer-conjugated nanoparticles for the collection and detection of multiple cancer cells. Anal Chem. 2007;79:3075–3082.
  • Ghanbari P, Mohseni M, Tabasinezhad M, et al. Inhibition of survivin restores the sensitivity of breast cancer cells to docetaxel and vinblastine. Appl Biochem Biotechnol. 2014;174:667–681.
  • Sharifi S, Barar J, Hejazi MS, et al. Roles of the Bcl-2/Bax ratio, caspase-8 and 9 in resistance of breast cancer cells to paclitaxel. Asian Pac J Cancer Prev. 2014;15:8617–8622.
  • Tabasinezhad M, Samadi N, Ghanbari P, et al. Sphingosin 1-phosphate contributes in tumor progression. J Cancer Res Ther. 2013;9:556–563.
  • Sharifi S, Barar J, Hejazi MS, et al. Doxorubicin changes Bax/Bcl-xL ratio, caspase-8 and 9 in breast cancer cells. Adv Pharm Bull. 2015;5:351–359.
  • Bakhshaiesh TO, Armat M, Shanehbandi D, et al. Arsenic trioxide promotes paclitaxel cytotoxicity in resistant breast cancer cells. Asian Pac J Cancer Prev. 2015;16:5191–5197.
  • Samadi N, Ghanbari P, Mohseni M, et al. Combination therapy increases the efficacy of docetaxel, vinblastine and tamoxifen in cancer cells. J Cancer Res Ther 2014;10:715.
  • Ghasemi S, Davaran S, Sharifi S. Comparison of cytotoxic activity of L778123 as a farnesyltranferase inhibitor and doxorubicin against A549 and HT-29 cell lines. Adv Pharm Bull 2013;3:73.
  • Mohseni M, Samadi N, Ghanbari P, et al. Co-treatment by docetaxel and vinblastine breaks down P-glycoprotein mediated chemo-resistance. Iran J Basic Med Sci. 2016;19:300.
  • Armat M, Bakhshaiesh TO, Sabzichi M, et al. The role of Six1 signaling in paclitaxel-dependent apoptosis in MCF-7 cell line. Bosn J Basic Med Sci. 2016;16:28.
  • Blagosklonny MV. Analysis of FDA approved anticancer drugs reveals the future of cancer therapy. Cell Cycle. 2004;3:1035–1042.
  • Zununi Vahed S, Salehi R, Davaran S, et al. Liposome-based drug co-delivery systems in cancer cells. Mater Sci Eng C Mater Biol Appl. 2017;71:1327–1341.
  • Hamidi A, Sharifi S, Davaran S, et al. Novel aldehyde-terminated dendrimers; synthesis and cytotoxicity assay. BioImpacts. 2012;2:97.
  • Basto P, Alexis F, Levy-Nissenbaum E, et al. Targeted aptamer-nanoparticles to diminish drug resistance of cancer cells in vitro study. Une. 2016;13:15.
  • Bazak R, Houri M, El Achy S, et al. Cancer active targeting by nanoparticles: a comprehensive review of literature. J Cancer Res Clin Oncol. 2015;141:769–784.
  • Chen M, Qin X, Zeng G. Biodiversity change behind wide applications of nanomaterials? Nano Today. 2017;17:11–13.
  • Jabir NR, Anwar K, Firoz CK, et al. An overview on the current status of cancer nanomedicines. Curr Med Res Opin. 2018;34:911–921.
  • Langer R. Drug delivery and targeting. Nature. 1998;392:5–10.
  • Jayasena SD. Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem. 1999;45:1628–1650.
  • Öztürk-Atar K, Eroğlu H, Çalış S. Novel advances in targeted drug delivery. J Drug Target. 2017;26:633–642.
  • Ladju RB, Pascut D, Massi MN, et al. Aptamer: A potential oligonucleotide nanomedicine in the diagnosis and treatment of hepatocellular carcinoma. Oncotarget. 2018;9:2951.
  • Zhou J, Rossi J. Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discov. 2017;16:181.
  • Benedetto G, Vestal CG, Richardson C. Aptamer-functionalized nanoparticles as “smart bombs”: the unrealized potential for personalized medicine and targeted cancer treatment. Target Oncol. 2015;10:467–485.
  • Chen X, Huang Y-F, Tan W. Using aptamer–nanoparticle conjugates for cancer cells detection. J Biomed Nanotechnol. 2008;4:400–409.
  • Jo H, Ban C. Aptamer–nanoparticle complexes as powerful diagnostic and therapeutic tools. Exp Mol Med. 2016;48:e230.
  • Sá LTM, Simmons S, Missailidis S, et al. Aptamer-based nanoparticles for cancer targeting. J Drug Target. 2013;21:427–434.
  • Kim M, Kim D-M, Kim K-S, et al. Applications of cancer cell-specific aptamers in targeted delivery of anticancer therapeutic agents. Molecules. 2018;23:830.
  • Kanwar JR, Mohan RR, Kanwar RK, et al. Applications of aptamers in nanodelivery systems in cancer, eye and inflammatory diseases. Nanomedicine (Lond). 2010;5:1435–1445.
  • Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249:505–510.
  • Keefe AD, Cload ST. SELEX with modified nucleotides. Curr Opin Chem Biol. 2008;12:448–456.
  • Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346:818.
  • Tan SY, Acquah C, Sidhu A, et al. Selex modifications and bioanalytical techniques for aptamer–target binding characterization. Crit Rev Anal Chem. 2016;46:521–537.
  • Murgha YE, Rouillard J-M, Gulari E. Methods for the preparation of large quantities of complex single-stranded oligonucleotide libraries. PloS One. 2014;9:e94752.
  • Blind M, Blank M. Aptamer selection technology and recent advances. Mol Ther Nucleic Acids. 2015;4:e223.
  • Zhou J, Rossi JJ. Cell-type-specific, aptamer-functionalized agents for targeted disease therapy. Mol Ther Nucleic Acids. 2014;3:e169.
  • Dickinson H, Lukasser M, Mayer G, et al. Cell-SELEX: in vitro selection of synthetic small specific ligands. Small Non-coding RNAs: Methods and Protocols 2015;213–224.
  • Chen W, Zhang K, Zou X, et al. Screening and identification of the nucleic acid aptamers in nasopharyngeal carcinoma. Genet Mol Res. 2013;12:6850–6857.
  • Yang J, Bowser MT. Capillary electrophoresis–SELEX selection of catalytic DNA aptamers for a small-molecule porphyrin target. Anal Chem. 2013;85:1525–1530.
  • Tok J, Lai J, Leung T, et al. Selection of aptamers for signal transduction proteins by capillary electrophoresis. Electrophoresis. 2010;31:2055–2062.
  • Bruno JG, Phillips T, Montez T, et al. Development of a fluorescent enzyme-linked DNA aptamer-magnetic bead sandwich assay and portable fluorometer for sensitive and rapid listeria detection. J Fluoresc. 2015;25:173–183.
  • Stoltenburg R, Reinemann C, Strehlitz B. FluMag-SELEX as an advantageous method for DNA aptamer selection. Anal Bioanal Chem. 2005;383:83–91.
  • Cox JC, Ellington AD. Automated selection of anti-protein aptamers. Bioorg Med Chem. 2001;9:2525–2531.
  • Eulberg D, Buchner K, Maasch C, et al. Development of an automated in vitro selection protocol to obtain RNA-based aptamers: identification of a biostable substance P antagonist. Nucleic Acids Res. 2005;33:e45–e45.
  • Seo Y-J, Chen S, Nilsen-Hamilton M, et al. A mathematical analysis of multiple-target SELEX. Bull Math Biol. 2010;72:1623–1665.
  • Morris KN, Jensen KB, Julin CM, et al. High affinity ligands from in vitro selection: complex targets. Proc Natl Acad Sci. 1998;95:2902–2907.
  • Zhang L, Radovic-Moreno AF, Alexis F, et al. Co-delivery of hydrophobic and hydrophilic drugs from nanoparticle-aptamer bioconjugates. ChemMedChem. 2007;2:1268–1271.
  • Majumder P, Gomes KN, Ulrich H. Aptamers: from bench side research towards patented molecules with therapeutic applications. Expert Opin Ther Patents. 2009;19:1603–1613.
  • Zhou G, Latchoumanin O, Hebbard L, et al. Aptamers as targeting ligands and therapeutic molecules for overcoming drug resistance in cancers. Adv Drug Deliv Rev. 2018. DOI:10.1016/j.addr.2018.04.005
  • Zhou W, Zhou Y, Wu J, et al. Aptamer-nanoparticle bioconjugates enhance intracellular delivery of vinorelbine to breast cancer cells. J Drug Target. 2014;22:57–66.
  • Yu D, Zhang Y, Mao Z, et al. Study of the selective uptake progress of aptamer-modified PLGA particles by liver cells. Macromol Biosci. 2013;13:1413–1421.
  • Lu JM, Wang X, Marin-Muller C, et al. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn. 2009;9:325–341.
  • Knop K, Hoogenboom R, Fischer D, et al. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem. 2010;49:6288–6308.
  • Danhier F, Ansorena E, Silva JM, et al. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012;161:505–522.
  • Guo J, Gao X, Su L, et al. Aptamer-functionalized PEG-PLGA nanoparticles for enhanced anti-glioma drug delivery. Biomaterials. 2011;32:8010–8020.
  • Alibolandi M, Ramezani M, Abnous K, et al. AS1411 aptamer-decorated biodegradable polyethylene glycol-poly(lactic-co-glycolic acid) nanopolymersomes for the targeted delivery of gemcitabine to non-small cell lung cancer in vitro. J Pharm Sci. 2016;105:1741–1750.
  • Mosafer J, Abnous K, Tafaghodi M, et al. In vitro and in vivo evaluation of anti-nucleolin-targeted magnetic PLGA nanoparticles loaded with doxorubicin as a theranostic agent for enhanced targeted cancer imaging and therapy. Eur J Pharm Biopharm. 2017;113:60–74.
  • Mosafer J, Teymouri M, Abnous K, et al. Study and evaluation of nucleolin-targeted delivery of magnetic PLGA-PEG nanospheres loaded with doxorubicin to C6 glioma cells compared with low nucleolin-expressing L929 cells. Mater Sci Eng. C Mater Biol Appl. 2017;72:123–133.
  • Taghavi S, Ramezani M, Alibolandi M, et al. Chitosan-modified PLGA nanoparticles tagged with 5TR1 aptamer for in vivo tumor-targeted drug delivery. Cancer Lett. 2017;400:1–8.
  • Powell D, Chandra S, Dodson K, et al. Aptamer-functionalized hybrid nanoparticle for the treatment of breast cancer. Eur J Pharm Biopharm. 2017;114:108–118.
  • Xu G, Yu X, Zhang J, et al. Robust aptamer–polydopamine-functionalized M-PLGA–TPGS nanoparticles for targeted delivery of docetaxel and enhanced cervical cancer therapy. Int J Nanomed. 2016;11:2953.
  • Huang F, You M, Chen T, et al. Self-assembled hybrid nanoparticles for targeted co-delivery of two drugs into cancer cells. Chem Commun. 2014;50:3103–3105.
  • Lupold SE. Aptamers and apple pies: a mini-review of PSMA aptamers and lessons from Donald S. Coffey. Am J Clin Exp Urol. 2018;6:78.
  • Farokhzad OC, Cheng J, Teply BA, et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci U S A. 2006;103:6315–6320.
  • Gu F, Zhang L, Teply BA, et al. Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc Natl Acad Sci U S A. 2008;105:2586–2591.
  • Dhar S, Gu FX, Langer R, et al. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc Natl Acad Sci U S A. 2008;105:17356–17361.
  • Cheng J, Teply BA, Sherifi I, et al. Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials. 2007;28:869–876.
  • Yang J, Xie SX, Huang Y, et al. Prostate-targeted biodegradable nanoparticles loaded with androgen receptor silencing constructs eradicate xenograft tumors in mice. Nanomedicine (Lond). 2012;7:1297–1309.
  • Pan M, Li W, Yang J, et al. Plumbagin-loaded aptamer-targeted poly D,L-lactic-co-glycolic acid-b-polyethylene glycol nanoparticles for prostate cancer therapy. Medicine. 2017;96:e7405.
  • Chen Z, Tai Z, Gu F, et al. Aptamer-mediated delivery of docetaxel to prostate cancer through polymeric nanoparticles for enhancement of antitumor efficacy. Eur J Pharm Biopharm. 2016;107:130–141.
  • Jiao J, Zou Q, Zou MH, et al. Aptamer-modified PLGA nanoparticle delivery of triplex forming oligonucleotide for targeted prostate cancer therapy. Neoplasma. 2016;63:569–575.
  • Wu M, Wang Y, Wang Y, et al. Paclitaxel-loaded and A10-3.2 aptamer-targeted poly(lactide-co-glycolic acid) nanobubbles for ultrasound imaging and therapy of prostate cancer. Int J Nanomed. 2017;12:5313–5330.
  • Wu X, Ding B, Gao J, et al. Second-generation aptamer-conjugated PSMA-targeted delivery system for prostate cancer therapy. Int J Nanomed. 2011;6:1747–1756.
  • Macdonald J, Henri J, Roy K, et al. EpCAM immunotherapy versus specific targeted delivery of drugs. Cancers. 2018;10:19.
  • Li D, Xiang S, Shigdar W., et al. Epithelial cell adhesion molecule aptamer functionalized PLGA-lecithin-curcumin-PEG nanoparticles for targeted drug delivery to human colorectal adenocarcinoma cells. Int J Nanomed. 2014;9:1083.
  • Alibolandi M, Ramezani M, Abnous K, et al. In vitro and in vivo evaluation of therapy targeting epithelial-cell adhesion-molecule aptamers for non-small cell lung cancer. J Control Release. 2015;209:88–100.
  • Alibolandi M, Ramezani M, Sadeghi F, et al. Epithelial cell adhesion molecule aptamer conjugated PEG-PLGA nanopolymersomes for targeted delivery of doxorubicin to human breast adenocarcinoma cell line in vitro. Int J Pharm. 2015;479:241–251.
  • Das M, Duan W, Sahoo SK. Multifunctional nanoparticle–EpCAM aptamer bioconjugates: a paradigm for targeted drug delivery and imaging in cancer therapy. Nanomedicine. 2015;11:379–389.
  • Subramanian N, Kanwar JR, kumar Athalya P, et al. EpCAM aptamer mediated cancer cell specific delivery of EpCAM siRNA using polymeric nanocomplex. J Biomed Sci. 2015;22:4.
  • Kaur J, Tikoo K. Ets1 identified as a novel molecular target of RNA aptamer selected against metastatic cells for targeted delivery of nano-formulation. Oncogene. 2015;34:5216–5228.
  • Alexis F, Rhee J-W, Richie JP, et al. New frontiers in nanotechnology for cancer treatment. Urol Oncol. 2008;26:74–85.
  • Seigneuric R, Markey L, S.A. Nuyten D, et al. From nanotechnology to nanomedicine: applications to cancer research. Curr Mol Med. 2010;10:640–652.
  • Colas P. The eleven-year switch of peptide aptamers. J Biol. 2008;7:2.
  • Aravind A, Jeyamohan P, Nair R, et al. AS1411 aptamer tagged PLGA-lecithin-PEG nanoparticles for tumor cell targeting and drug delivery. Biotechnol Bioeng. 2012;109:2920–2931.
  • Farokhzad OC, Jon S, Khademhosseini A, et al. Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res. 2004;64:7668–7672.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.