320
Views
22
CrossRef citations to date
0
Altmetric
Review Article

Redox-responsive smart nanogels for intracellular targeting of therapeutic agents: applications and recent advances

&
Pages 408-422 | Received 10 May 2018, Accepted 16 Aug 2018, Published online: 06 Sep 2018

References

  • Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin. 2018;68:7–30.
  • Rychahou P, Bae Y, Reichel D, et al. Colorectal cancer lung metastasis treatment with polymer-drug nanoparticles. J Control Release. 2018;275:85–91.
  • Oprea AD, Russell RR, Russell KS, et al. Chemotherapy agents with known cardiovascular side effects and their anesthetic implications. J Cardiothorac Vasc Anesth. 2017;31:2206–2226.
  • Zhai S, Hu X, Hu Y, et al. Visible light-induced crosslinking and physiological stabilization of diselenide-rich nanoparticles for redox-responsive drug release and combination chemotherapy. Biomaterials. 2017;121:41–54.
  • Ghorbani M, Hamishehkar H. Decoration of gold nanoparticles with thiolated pH-responsive polymeric (PEG-b-p(2-dimethylamio ethyl methacrylate-co-itaconic acid) shell: a novel platform for targeting of anticancer agent. Mater Sci Eng C. 2017;81:561–570.
  • Ding F, Mou Q, Ma Y, et al. A crosslinked nucleic acid nanogel for effective siRNA delivery and antitumor therapy. Angew Chem Int Ed Engl. 2018;57:3064–3068.
  • Ghorbani M, Hamishehkar H, Arsalani N, et al. A novel dual-responsive core-crosslinked magnetic-gold nanogel for triggered drug release. Mater Sci Eng C Mater Biol Appl. 2016;68:436–444.
  • Ghorbani M, Hamishehkar H, Hajipour H, et al. Ternary-responsive magnetic nanocarriers for targeted delivery of thiol-containing anticancer drugs. New J Chem. 2016;40:3561–3570.
  • Ghorbani M, Hamishehkar H, Arsalani N, et al. Surface decoration of magnetic nanoparticles with folate-conjugated poly(N-isopropylacrylamide-co-itaconic acid): a facial synthesis of dual-responsive nanocarrier for targeted delivery of doxorubicin. Int J Polym Mater Polym Biomater. 2016;65:683–694.
  • Sabzichi M, Mohammadian J, Ghorbani M, et al. Fabrication of all-trans-retinoic acid-loaded biocompatible precirol: a strategy for escaping dose-dependent side effects of doxorubicin. Coll Surf B Biointerf. 2017;159:620–628.
  • Ghorbani M, Hamishehkar H. Redox and pH-responsive gold nanoparticles as a new platform for simultaneous triple anti-cancer drugs targeting. Int J Pharm. 2017;520:126–138.
  • Chen J, Ding J, Xu W, et al. Receptor and microenvironment dual-recognizable nanogel for targeted chemotherapy of highly metastatic malignancy. Nano Lett. 2017;17:4526–4533.
  • Guo H, Li F, Xu W, et al. Mucoadhesive cationic polypeptide nanogel with enhanced penetration for efficient intravesical chemotherapy of bladder cancer. Adv Sci. 2018;5:1800004.
  • Nel A, Ruoslahti E, Meng H. New insights into “permeability” as in the enhanced permeability and retention effect of cancer nanotherapeutics. ACS Nano. 2017;11:9567–9569.
  • Jing Y, Xiong X, Ming Y, et al. A multifunctional micellar nanoplatform with pH-triggered cell penetration and nuclear targeting for effective cancer therapy and inhibition to lung metastasis. Adv Healthcare Mater. 2018;7:1700974:1–1700913.
  • Yang Y, Xu L, Zhu W, et al. One-pot synthesis of pH-responsive charge-switchable PEGylated nanoscale coordination polymers for improved cancer therapy. Biomaterials. 2018;156:121–133.
  • Chen L, Zang F, Wu H, et al. Using PEGylated magnetic nanoparticles to describe the EPR effect in tumor for predicting therapeutic efficacy of micelle drugs. Nanoscale. 2018;10:1788–1797.
  • Soni G, Yadav KS. Nanogels as potential nanomedicine carrier for treatment of cancer: a mini review of the state of the art. Saudi Pharm J. 2016;24:133–139.
  • Cheng CC, Liang MC, Liao ZS, et al. Self-assembled supramolecular nanogels as a safe and effective drug delivery vector for cancer therapy. Macromol Biosci. 2017;17:1600370–1600310.
  • Jahangirian H, Lemraski EG, Webster TJ, et al. A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. Int J Nanomed. 2017;12:2957–2978.
  • Raemdonck K, Demeester J, De Smedt S. Advanced nanogel engineering for drug delivery. Soft Matter. 2009;5:707–715.
  • Li S, Zhang T, Xu W, et al. Sarcoma-targeting peptide-decorated polypeptide nanogel intracellularly delivers shikonin for upregulated osteosarcoma necroptosis and diminished pulmonary metastasis. Theranostics. 2018;8:1361–1375.
  • Chen X, Xiao J, Zhu Y, et al. Sequentially responsive shell-stacked nanoparticles for deep penetration into solid tumors. Adv Mater. 2017;136:1–8.
  • Peters JT, Hutchinson SS, Lizana N, et al. Synthesis and characterization of poly(N-isopropyl methacrylamide) core/shell nanogels for controlled release of chemotherapeutics. Chem Eng J. 2018; 340:58–65.
  • Mohtashamian S, Boddohi S, Hosseinkhani S. Preparation and optimization of self-assembled chondroitin sulfate-nisin nanogel based on quality by design concept. Int J Biol Macromol. 2018;107:2730–2739.
  • Shi F, Ding J, Xiao C, et al. Intracellular microenvironment responsive PEGylated polypeptide nanogels with ionizable cores for efficient doxorubicin loading and triggered release. J Mater Chem. 2012;22:14168–14179.
  • Shi B, Huang K, Ding J, et al. Intracellularly swollen polypeptide nanogel assists hepatoma chemotherapy. Theranostics. 2017;7:703–716.
  • Pei M, Jia X, Zhao X, et al. Alginate-based cancer-associated, stimuli-driven and turn-on theranostic prodrug nanogel for cancer detection and treatment. Carbohydr Polym. 2018;183:131–139.
  • Ghorbani M, Hamishehkar H, Arsalani N, et al. Preparation of thermo and pH-responsive polymer@ Au/Fe3O4 core/shell nanoparticles as a carrier for delivery of anticancer agent. J Nanopart Res. 2015;17:1–13.
  • Liu M, Du H, Zhang W, et al. Internal stimuli-responsive nanocarriers for drug delivery: design strategies and applications. Mater Sci Eng C. 2017;71:1267–1280.
  • Duan L, Wang Y, Zhang Y, et al. pH/redox/thermo-stimulative nanogels with enhanced thermosensitivity via incorporation of cationic and anionic components for anticancer drug delivery. Int J Polym Mater Polym Biomater. 2017;4037:1–9.
  • Jiang Z, Chen J, Cui L, et al. Advances in stimuli-responsive polypeptide nanogels. Small Methods. 2018;2:1700307.
  • Huang K, Shi B, Xu W, et al. Reduction-responsive polypeptide nanogel delivers antitumor drug for improved efficacy and safety. Acta Biomater. 2015;27:179–193.
  • Li S, Zhang J, Deng C, et al. Redox-sensitive and intrinsically fluorescent photoclick hyaluronic acid nanogels for traceable and targeted delivery of cytochrome c to breast tumor in mice. ACS Appl Mater Interfaces. 2016;8:21155–21162.
  • Huo M, Yuan J, Tao L, et al. Redox-responsive polymers for drug delivery: from molecular design to applications. Polym Chem. 2014;5:1519–1528.
  • Ding J, Shi F, Xiao C, et al. One-step preparation of reduction-responsive poly(ethylene glycol)-poly(amino acid)s nanogels as efficient intracellular drug delivery platforms. Polym Chem. 2011;2:2857–2864.
  • Cheng R, Meng F, Deng C, et al. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials. 2013;34:3647–3657. [Internet]. [cited 2015 Mar 21]
  • Wu W, Yao W, Wang X, et al. Bioreducible heparin-based nanogel drug delivery system. Biomaterials. 2015;39:260–268.
  • He H, Cattran AW, Nguyen T, et al. Triple-responsive expansile nanogel for tumor and mitochondria targeted photosensitizer delivery. Biomaterials. 2014;35:9546–9553.
  • Ding J, Shi F, Li D, et al. Enhanced endocytosis of acid-sensitive doxorubicin derivatives with intelligent nanogel for improved security and efficacy. Biomater Sci. 2013;1:633–646.
  • Zhan Y, Gonçalves M, Yi P, et al. Thermo/redox/pH-triple sensitive poly(N-isopropylacrylamide-co-acrylic acid) nanogels for anticancer drug delivery. J Mater Chem B. 2015;3:4221–4230.
  • Tian Y, Wang Y, Shen S, et al. Temperature and redox dual-responsive biodegradable nanogels for optimizing antitumor drug delivery. Part Part Syst Charact. 2015;32:1092–1101.
  • Guo H, Xu W, Chen J, et al. Positively charged polypeptide nanogel enhances mucoadhesion and penetrability of 10-hydroxycamptothecin in orthotopic bladder carcinoma. J Control Release. 2017;259:136–148.
  • Gupta MK, Martin JR, Werfel TA, et al. Cell protective, ABC triblock polymer-based thermoresponsive hydrogels with ROS-triggered degradation and drug release. J Am Chem Soc. 2014;136:14896–14902.
  • Cheng X, Jin Y, Sun T, et al. An injectable, dual pH and oxidation-responsive supramolecular hydrogel for controlled dual drug delivery. Colloids Surf B Biointerfaces. 2016;141:44–52.
  • Zhang M, Song CC, Du FS, et al. Supersensitive oxidation-responsive biodegradable PEG hydrogels for glucose-triggered insulin delivery. ACS Appl Mater Interfaces. 2017;9:25905–25914.
  • Quinn JF, Whittaker MR, Davis TP. Glutathione responsive polymers and their application in drug delivery systems. Polym Chem. 2017;8:97–126.
  • Ghorbani M, Hamishehkar H. A novel multi stimuli-responsive PEGylated hybrid gold/nanogels for co-delivery of doxorubicin and 6-mercaptopurine. Mater Sci Eng C. 2018;92:599–611.
  • Yang C, Li C, Zhang P, et al. Redox responsive hyaluronic acid nanogels for treating RHAMM (CD168) over-expressive cancer, both primary and metastatic tumors. Theranostics. 2017;7:1719–1734.
  • Cao Z, Zhou X, Wang G. Selective release of hydrophobic and hydrophilic cargos from multi-stimuli-responsive nanogels. ACS Appl Mater Interfaces. 2016;8:28888–28896.
  • Chen S, Bian Q, Wang P, et al. Photo, pH and redox multi-responsive nanogels for drug delivery and fluorescence cell imaging. Polym Chem. 2017; 8:6150–6157.
  • He L, Li D, Wang Z, et al. L-cystine-crosslinked polypeptide nanogel as a reduction-responsive excipient for prostate cancer chemotherapy. Polymers (Basel). 2016;8:36–40.
  • Ashwinkumar N, Maya S, Jayakumar R. Redox-responsive cystamine conjugated chitin–hyaluronic acid composite nanogels. RSC Adv. 2014;4:49547–49555.
  • Chen W, Zheng M, Meng F, et al. In situ forming reduction-sensitive degradable nanogels for facile loading and triggered intracellular release of proteins. Biomacromolecules. 2013;14:1214–1222.
  • Miao C, Li F, Zuo Y, et al. Novel redox-responsive nanogels based on poly(ionic liquid)s for the triggered loading and release of cargos. RSC Adv. 2016;6:3013–3019.
  • Kim H, Kim B, Lee C, et al. Redox-responsive biodegradable nanogels for photodynamic therapy using Chlorin e6. J Mater Sci. 2016;51:8442–8451.
  • Park CW, Yang HM, Woo MA, et al. Completely disintegrable redox-responsive poly(amino acid) nanogels for intracellular drug delivery. J Ind Eng Chem. 2017;45:182–188.
  • Zhang F, Gong S, Wu J, et al. CXCR4-targeted and redox responsive dextrin nanogel for metastatic breast cancer therapy. Biomacromolecules. 2017;18:1793–1802.
  • Nuhn L, Braun L, Overhoff I, et al. Degradable cationic nanohydrogel particles for stimuli-responsive release of siRNA. Macromol Rapid Commun. 2014;35:2057–2064.
  • Noree S, Tangpasuthadol V, Kiatkamjornwong S, et al. Cascade post-polymerization modification of single pentafluorophenyl ester-bearing homopolymer as a facile route to redox-responsive nanogels. J Colloid Interface Sci. 2017;501:94–102.
  • Khorsand B, Lapointe G, Brett C, et al. Intracellular drug delivery nanocarriers of glutathione-responsive degradable block copolymers having pendant disulfide linkages. Biomacromolecules. 2013;14:2103–2111.
  • Liu X, Wang J, Xu W, et al. Glutathione-degradable drug-loaded nanogel effectively and securely suppresses hepatoma in mouse model. Int J Nanomed. 2015;10:6587–6602.
  • Qian H, Wang X, Yuan K, et al. Delivery of doxorubicin in vitro and in vivo using bio-reductive cellulose nanogels. Biomater Sci. 2014;2:220–232.
  • Pan YJ, Chen YY, Wang DR, et al. Redox/pH dual stimuli-responsive biodegradable nanohydrogels with varying responses to dithiothreitol and glutathione for controlled drug release. Biomaterials. 2012;33:6570–6579.
  • Gyarmati B, Vajna B, Némethy Á, et al. Redox- and pH-responsive cysteamine-modified poly(aspartic acid) showing a reversible sol-gel transition. Macromol Biosci. 2013;13:633–640.
  • Curcio M, Diaz-Gomez L, Cirillo G, et al. pH/redox dual-sensitive dextran nanogels for enhanced intracellular drug delivery. Eur J Pharm Biopharm. 2017;117:324–332.
  • Legros C, De Pauw-Gillet M-C, Tam KC, et al. pH and redox responsive hydrogels and nanogels made from poly(2-ethyl-2-oxazoline). Polym Chem. 2013;4:4801–4809.
  • Yang H, Wang Q, Huang S, et al. Smart pH/redox dual-responsive nanogels for on-demand intracellular anticancer drug release. ACS Appl Mater Interfaces. 2016;8:7729–7738.
  • Li M, Tang Z, Sun H, et al. pH and reduction dual-responsive nanogel cross-linked by quaternization reaction for enhanced cellular internalization and intracellular drug delivery. Polym Chem. 2013;4:1199–1207.
  • Sousa-Herves A, Wedepohl S, Calderón M. One-pot synthesis of doxorubicin-loaded multiresponsive nanogels based on hyperbranched polyglycerol. Chem Commun. 2015;51:5264–5267.
  • Hailemeskel BZ, Addisu KD, Prasannan A, et al. Synthesis and characterization of diselenide linked poly(ethylene glycol) nanogel as multi-responsive drug carrier. Appl Surf Sci. 2018;449:15–29.
  • Xia X, Xiang X, Huang F, et al. A tellurylsulfide bond-containing redox-responsive superparamagnetic nanogel with acid-responsiveness for efficient anticancer therapy. Chem Commun. 2017;53:13141–13144.
  • Morimoto N, Qiu XP, Winnik FM, et al. Dual stimuli-responsive nanogels by self-assembly of polysaccharides lightly grafted with thiol-terminated poly(N-isopropylacrylamide) chains. Macromolecules. 2008;41:5985–5987.
  • Tan J, Kang H, Liu R, et al. Dual-stimuli sensitive nanogels fabricated by self-association of thiolated hydroxypropyl cellulose. Polym Chem. 2011;2:672–678.
  • Li F, Yang H, Bie N, et al. Zwitterionic temperature/redox-sensitive nanogels for near-infrared light-triggered synergistic thermo-chemotherapy. ACS Appl Mater Interfaces. 2017;9:23564–23573.
  • Lv W, Liu S, Feng W, et al. Temperature- and redox-directed multiple self assembly of poly(N-isopropylacrylamide) grafted dextran nanogels. Macromol Rapid Commun. 2011;32:1101–1107.
  • Rahimian K, Wen Y, Oh JK. Redox-responsive cellulose-based thermoresponsive grafted copolymers and in-situ disulfide crosslinked nanogels. Polymer (United Kingdom). 2015;72:387–394.
  • Zhang Q, Aleksanian S, Noh SM, et al. Thiol-responsive block copolymer nanocarriers exhibiting tunable release with morphology changes. Polym Chem. 2013;4:351–359.
  • Tian Y, Bian S, Yang W. A redox-labile poly(oligo(ethylene glycol)methacrylate)-based nanogel with tunable thermosensitivity for drug delivery. Polym Chem. 2016;7:1913–1921.
  • Yang H, Wang Q, Chen W, et al. Hydrophilicity/hydrophobicity reversable and redox-sensitive nanogels for anticancer drug delivery. Mol Pharmaceutics. 2015;12:1636–1647.
  • Lou S, Gao S, Wang W, et al. Galactose-functionalized multi-responsive nanogels for hepatoma-targeted drug delivery. Nanoscale. 2015;7:3137–3146.
  • Bilalis P, Varlas S, Kiafa A, et al. Preparation of hybrid triple-stimuli responsive nanogels based on poly(L-histidine). J Polym Sci Part A: Polym Chem. 2016;54:1278–1288.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.