228
Views
16
CrossRef citations to date
0
Altmetric
Original Article

Alive attenuated Salmonella as a cargo shuttle for smart carrying of gold nanoparticles to tumour hypoxic regions

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 315-324 | Received 08 Jun 2018, Accepted 05 Sep 2018, Published online: 03 Oct 2018

References

  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–674.
  • Thun MJ, DeLancey JO, Center MM, et al. The global burden of cancer: priorities for prevention. Carcinogenesis. 2010;31:100–110.
  • Haume K, Rosa S, Grellet S, et al. Gold nanoparticles for cancer radiotherapy: a review. Cancer Nano. 2016;7:8–28.
  • Delaney G, Barton M. Evidence-based estimates of the demand for radiotherapy. Clin Oncol. 2015;27:70–76.
  • Jia SB, Hadizadeh MH, Mowlavi AA, et al. Evaluation of energy deposition and secondary particle production in proton therapy of brain using a slab head phantom. Rep Prac Oncol Radiother. 2014;19:376–384.
  • Baskar R, Dai J, Wenlong N, et al. Biological response of cancer cells to radiation treatment. Front Mol Biosci. 2014;1:24–36.
  • Rybinski B, Yun K. Addressing intra-tumoral heterogeneity and therapy resistance. Oncotarget. 2016;7:72322–72342.
  • Orel V, Zabolotny M, Orel V. Heterogeneity of hypoxia in solid tumours and mechanochemical reactions with oxygen nanobubbles. Med Hypotheses. 2017;102:82–86.
  • Hockel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Nat Cancer Inst. 2001;93:266–276.
  • Liu S, Shah SJ, Wilmes LJ, et al. Quantitative tissue oxygen measurement in multiple organs using 19F MRI in a rat model. Magn Reson Med. 2011;66:1722–1730.
  • McKeown S. Defining normoxia, physoxia and hypoxia in tumours—implications for treatment response. Bjr. 2014;87:20130676–20130712.
  • Lee J, Chatterjee DK, Lee MH, et al. Gold nanoparticles in breast cancer treatment: promise and potential pitfalls. Cancer Lett. 2014;347:46–53.
  • Eales K, Hollinshead K, Tennant D. Hypoxia and metabolic adaptation of cancer cells. Oncogenesis. 2016;5:190–198.
  • Muz B, de la Puente P, Azab F, et al. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia. 2015;3:83–92.
  • Carlson DJ, Yenice KM, Orton CG. Tumor hypoxia is an important mechanism of radioresistance in hypofractionated radiotherapy and must be considered in the treatment planning process. Med Phys. 2011;38:6347–6350.
  • Gray LH, Conger AD, Ebert M, et al. The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol. 1953;26:638–648.
  • Yasui H, Asanuma T, Kino J, et al. The prospective application of a hypoxic radiosensitizer, doranidazole to rat intracranial glioblastoma with blood brain barrier disruption. BMC Cancer. 2013;13:106–115
  • Lee C-T, Boss M-K, Dewhirst MW. Imaging tumor hypoxia to advance radiation oncology. Antioxid Redox Signal. 2014;21:313–337.
  • Workman P, Bleehen N, Wiltshire C. Phenytoin shortens the half-life of the hypoxic cell radiosensitizer misonidazole in man: implications for possible reduced toxicity. Br J Cancer. 1980;41:302–312.
  • Rockwell S, Dobrucki IT, Kim EY, et al. Hypoxia and radiation therapy: past history, ongoing research, and future promise. Cmm. 2009;9:442–458.
  • Stoyanova R, Huang K, Sandler K, et al. Mapping tumor hypoxia in vivo using pattern recognition of dynamic contrast-enhanced MRI data. Translational Oncol. 2012;5:437–447.
  • Cui L, Her S, Borst GR, et al. Radiosensitization by gold nanoparticles: will they ever make it to the clinic? Radiother Oncol. 2017;124(3):344–356.
  • Shrestha S, Cooper LN, Andreev OA, et al. Gold nanoparticles for radiation enhancement in vivo. Jacobs J Radi Oncol. 2016;3:23–26.
  • Wang Y, Xie Y, Li J, et al. Tumor-penetrating nanoparticles for enhanced anticancer activity of combined photodynamic and hypoxia-activated therapy. ACS Nano. 2017;11:2227–2238.
  • Her S, Jaffray DA, Allen C. Gold nanoparticles for applications in cancer radiotherapy: Mechanisms and recent advancements. Adv Drug Del Rev. 2017;109:84–101.
  • Jiang W, Huang Y, An Y, et al. Remodeling tumor vasculature to enhance delivery of intermediate-sized nanoparticles. ACS Nano. 2015;9:8689–8696.
  • Felgner S, Kocijancic D, Frahm M, et al. Bacteria in cancer therapy: renaissance of an old concept. Int J Microbiol. 2016;2016:1–15.
  • Song S, Vuai MS, Zhong M. The role of bacteria in cancer therapy – enemies in the past, but allies at present. Infect Agents Cancer. 2018;13:9–23.
  • Luo C-H, Huang C-T, Su C-H, et al. Bacteria-mediated hypoxia-specific delivery of nanoparticles for tumors imaging and therapy. Nano Lett. 2016;16:3493–3499.
  • Anderson JC, Clarke EJ, Arkin AP, et al. Environmentally controlled invasion of cancer cells by engineered bacteria. J Mol Biol. 2006;355:619–627.
  • Lim D, Kim KS, Kim H, et al. Anti-tumor activity of an immunotoxin (TGFα-PE38) delivered by attenuated Salmonella typhimurium. Oncotarget. 2017;8:37550–37560.
  • Lee C-H. Employment of Salmonella in cancer gene therapy, bacterial therapy of cancer. Methods Protocols. 2016;1409:79–83.
  • Zheng JH, Min J-J. Targeted cancer therapy using engineered Salmonella typhimurium. Chonnam Med J. 2016;52:173–184.
  • Wang C-Z, Kazmierczak RA, Eisenstark A. Strains, mechanism, and perspective: Salmonella-based cancer therapy. Inter J Microbiol. 2016;2016:1–11.
  • Jingyue, Z, Bernd, F. Synthesis of gold nanoparticles via chemical reduction methods, proceedings of the nanocon. Czech Republic: Brno; 2015.
  • Zhang J-J, Gu M-M, Zheng T-T, et al. Synthesis of gelatin-stabilized gold nanoparticles and assembly of carboxylic single-walled carbon nanotubes/Au composites for cytosensing and drug uptake. Anal Chem. 2009;81:6641–6648.
  • Suarasan S, Focsan M, Soritau O, et al. One-pot, green synthesis of gold nanoparticles by gelatin and investigation of their biological effects on osteoblast cells. Colloids Surf B: Biointerfaces. 2015;132:122–131.
  • Joseph D, Tyagi N, Geckeler C, et al. Protein-coated pH-responsive gold nanoparticles: microwave-assisted synthesis and surface charge-dependent anticancer activity. Beilstein J Nanotechnol. 2014;5:1452–1462.
  • Murawala P, Tirmale A, Shiras A, et al. In situ synthesized BSA capped gold nanoparticles: effective carrier of anticancer drug methotrexate to MCF-7 breast cancer cells. Mater Sci Eng C. 2014;34:158–167.
  • Lee K-H, Lai S-F, Lin Y-C, et al. Gold nanoparticles: BSA (Bovine Serum Albumin) coating and X-ray irradiation produce variable-spectrum photoluminescence. Mat Chem Phy. 2015;149–150:582–586.
  • Samadian H, Hosseini-Nami S, Kamrava SK, et al. Folate-conjugated gold nanoparticle as a new nanoplatform for targeted cancer therapy. J Cancer Res Clin Oncol. 2016;142:2217–2229.
  • Li G, Li D, Zhang L, et al. One‐step synthesis of folic acid protected gold nanoparticles and their receptor‐mediated intracellular uptake. Chem Eur J. 2009;15:9868–9873.
  • Chatterjee S, Bandyopadhyay A, Sarkar K. Effect of iron oxide and gold nanoparticles on bacterial growth leading towards biological application. J Nanobiotechnol. 2011;9:34–41.
  • Kumar A, Pandey AK, Singh SS, et al. A flow cytometric method to assess nanoparticle uptake in bacteria. Cytometry Part A. 2011;79:707–712.
  • Shane B, Stokstad E. Transport and metabolism of folates by bacteria. J Biol Chem. 1975;250:2243–2253.
  • Forchhammer K. Glutamine signalling in bacteria. Front Biosci. 2007;12:358–370.
  • Betteridge P, Ayling P. The regulation of glutamine transport and glutamine synthetase in Salmonella typhimurium. Microbiology. 1976;95:324–334.
  • Zucker R, Daniel K, Massaro E, et al. Detection of silver nanoparticles in cells by flow cytometry using light scatter and far‐red fluorescence. Cytometry Part A. 2013;83:962–972.
  • da Silva HB, Fonseca R, Pereira RM, et al. Splenic macrophage subsets and their function during blood-borne infections. Front Immunol. 2015;6:480–489.
  • Nguyen L, Fifis T, Malcontenti-Wilson C, et al. Spatial morphological and molecular differences within solid tumors may contribute to the failure of vascular disruptive agent treatments. BMC Cancer. 2012;12:522–534.
  • Thamm DH, Kurzman ID, King I, et al. Systemic administration of an attenuated, tumor-targeting Salmonella typhimurium to dogs with spontaneous neoplasia: phase I evaluation. Clin Cancer Res. 2005;11:4827–4834.
  • Zhao M, Yang M, Li X-M, et al. Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium. Proc Nat Acad Sci. 2005;102:755–760.
  • Zhang L, Gao L, Zhao L, et al. Intratumoral delivery and suppression of prostate tumor growth by attenuated Salmonella enterica serovar typhimurium carrying plasmid-based small interfering RNAs. Cancer Res. 2007;67:5859–5864.
  • Ji K, Wang B, Shao Y-t, et al. Synergistic suppression of prostatic cancer cells by coexpression of both murine double minute 2 small interfering RNA and wild-type p53 gene in vitro and in vivo. J Pharmacol Exper Ther. 2011;338:173–183.
  • Clairmont C, Lee K, Pike J, et al. Biodistribution and genetic stability of the novel antitumor agent VNP20009, a genetically modified strain of Salmonella typhimuvium. J Infect Dis. 2000;181:1996–2002.
  • Zhao M, Yang M, Ma H, et al. Targeted therapy with a Salmonella typhimurium leucine-arginine auxotroph cures orthotopic human breast tumors in nude mice. Cancer Res. 2006;66:7647–7652.
  • Zhao M, Geller J, Ma H, et al. Monotherapy with a tumor-targeting mutant of Salmonella typhimurium cures orthotopic metastatic mouse models of human prostate cancer. Proc Nat Acad Sci. 2007;104:10170–10174.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.