390
Views
14
CrossRef citations to date
0
Altmetric
Review Article

Nano-carriers for drug routeing – towards a new era

& ORCID Icon
Pages 525-541 | Received 15 Oct 2018, Accepted 18 Dec 2018, Published online: 11 Jan 2019

References

  • Couvreur P, Vauthier C. Nanotechnology: intelligent design to treat complex disease. Pharm Res. 2006;23:1417–1450.
  • Bazile D. 2018. Translation of nano-carriers from discovery to proof-of-concept in human – quality management based on the technology readiness levels. In: P. M. Moghimi, éd. Nanomedicine: exploring the potential of nano-therapeutics. s.l.:CRC Press, p. in press.
  • Couvreur P, Kante B, Roland M, et al. Adsorption of antineoplastic drugs to polyalkylcyanoacrylate nanoparticles and their release in calf serum. J Pharm Sci. 1979;68:1521–1524.
  • Brasseur F, Couvreur P, Kante B, et al. Actinomycin D absorbed on polymethylcyanoacrylate nanoparticles: increased efficiency against an experimental tumor. Eur J Cancer. 1980;16:1441–1445.
  • Couvreur P, et al. 1984. Design of biodegradable polyalkylcyanoacrylate nanoparticles as a drug carrier: pharmaceutical, immunological, and medical aspects. In: S. Davis, éd. Microspheres and drug therapy. Amsterdam: Elsevier, pp. 103–115.
  • Kreuter J. Nanoparticles—a historical perspective. Int J Pharm. 2007;331:1–10.
  • Damge C, Michel C, Aprahamian M, et al. New approach for oral administration of insulin with polyalkylcyanoacrylate nanocapsules as drug carrier. Diabetes. 1988;37:246–251.
  • Aguirre TAS, Teijeiro-Osorio D, Rosa M. Current status of selected oral peptide technologies that are in advanced preclinical development and in clinical trials. Adv Drug Deliv Rev. 2016;106:223–241.
  • Yu M, Wu J, Shi J, et al. Nanotechnology for protein delivery: overview and perspectives. J Control Release. 2016;240:24–37.
  • Davis ME, Zuckerman JE, Choi CHJ, et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature. 2010;464:1067–1070.
  • Frima H, Gabellieri C, Nilsson M. Drug delivery research in the European Union's Seventh Framework Programme for Research. J Control Release. 2012;161:409–415.
  • Lakkireddy H, et al. Oral delivery of diabetes peptides – Comparing standard formulations incorporating functional excipients and nanotechnologies in the translational context. Adv Drug Deliv Rev 2016.
  • Boxenbaum H. Interspecies scaling, allometry, physiological time, and the ground plan of pharmacokinetics. J Pharmacokinet Biopharm. 1982;10:201–227.
  • Maeda H. Macromolecular therapeutics in cancer treatment: the EPR effect and beyond. J Control Release. 2012;164:138–144.
  • Bertrand N, Wu J, Xu X, et al. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2014;66:2–25.
  • Arranja A, Pathak V, Lammers T, et al. Tumor-targeted nanomedicines for cancer theranostics. Pharmacol Res. 2017;115:87–95.
  • Bosch F, Rosich L. The contributions of Paul Ehrlich to pharmacology: a tribute on the occasion of the centenary of his Nobel prize. Pharmacology. 2008;82:171–179.
  • Bertrand N, Leroux J-C. The journey of a drug-carrier in the body: an anatomo-physiological perspective. J Control Release. 2012;161:152–163.
  • Kutscher HL, Chao P, Deshmukh M, et al. Threshold size for optimal passive pulmonary targeting and retention of rigid microparticles in rats. J Control Release. 2010;143:31–37.
  • Choi HS, Liu W, Misra P, et al. Renal clearance of quantum dots. Nat Biotechnol. 2007;25:1165–1170.
  • Moghimi M, Hunter A, Murray J. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev. 2001;53:283–318.
  • Owens D, III, Peppas N. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307:93–102.
  • Szebeni J. Complement activation-related pseudoallergy: a new class of drug-induced acute immune toxicity. Toxicology. 2005;216:106–121.
  • Prabhakar U, Maeda H, Jain RK, et al. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 2013;73:2412–2417.
  • Weis S. Vascular permeability in cardiovascular disease and cancer. Curr Opin Hematol. 2008;15:243–249.
  • Harrington K, et al. Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes. Clin Cancer Res. 2001;7:243–254.
  • Dvorak H, J A, N, Dvorak J, et al. Identfication and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am J Pathol. 1988;133:95–109.,
  • Kobayashi H, Watanabe R, Choyke P. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics. 2014;4:81–89.
  • Daemen T, Hofstede G, Ten Kate MT, et al. Liposomal doxorubicin‐induced toxicity: depletion and impairment of phagocytic activity of liver macrophages. Int J Cancer. 1995;61:716–721.
  • Plard J-P, Bazile D. Comparison of the safety profiles of PLA50 and Me.PEG-PLA50 nanoparticles after single dose intravenous administration to rat. Colloids Surf B Biointerfaces. 1999;16:173–183.
  • Poulin P, Theil F-P. Prediction of pharmacokinetics prior to in vivo studies. II. Generic physiologically based pharmacokinetic models of drug disposition. J Pharm Sci. 2002;91:1358–1370.
  • McWhorter FY, Davis CT, Liu WF. Physical and mechanical regulation of macrophage phenotype and function. Cell Mol Life Sci. 2015;72:1303–1316.
  • Jacobs F, Wisse E, De Geest B. The role of liver sinusoidal cells in hepatocyte-directed gene transfer. Am J Pathol. 2010;176:14–21.
  • Lawrence MG, Altenburg MK, Sanford R, et al. Permeation of macromolecules into the renal glomerular basement membrane and capture by the tubules. Proc Natl Acad Sci USA. 2017;114:2958–2963.
  • Sehgal A, Vaishnaw A, Fitzgerald K. Liver as a target for oligonucleotide therapeutics. J Hepatol. 2013;59:1354–1359.
  • Wisse E. An electron microscopic study of the fenestrated endothelial lining of rat liver sinusoids. J Ultrastruct Res. 1970;31:125–150.
  • Braet F, Wisse E. Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review. Comp Hepatol. 2002;1:1–17.
  • Wisse E, de Zanger RB, Charels K, et al. The liver sieve: considerations concerning the structure and function of endothelial fenestrae, the sinusoidal wall and the space of Disse. Hepatology. 1985;5:683–692.
  • Do H, Healey J, Waller E, et al. Expression of factor VIII by murine liver sinusoidal endothelial cells. J Biol Chem. 1999;274:19587–19592.
  • Shiratori Y, Tananka M, Kawase T, et al. Quantification of sinusoidal cell function in vivo. Semin Liver Dis. 1993;13:39–49.
  • Robinson MW, Harmon C, O'Farrelly C. Liver immunology and its role in inflammation and homeostasis. Cell Mol Immunol. 2016;13:267–276.
  • Li F, Wang J. Targeted delivery of drugs for liver fibrosis. Expert Opin Drug Deliv. 2009;6:531–541.
  • Alving C. Delivery of liposome-encapsulated drugs to macrophages. Pharmacol Ther. 1983;22:407–424.
  • Tacke F. Targeting hepatic macrophages to treat liver diseases. J Hepatol. 2017;66:1300–1312.
  • Alving CR, Steck EA, Chapman WL, et al. Therapy of leishmaniasis: superior efficacies of liposome-encapsulated drugs. Proc Nat Acad Sci USA. 1978;75:2959–2963.
  • Fattal E, Youssef M, Couvreur P, et al. Treatment of experimental salmonellosis in mice with ampicillin-bound nanoparticles. Antimicrob Agents Chemother. 1989;33:1540–1543.
  • Duong HTT, Dong Z, Su L, et al. The use of nanoparticles to deliver nitric oxide to hepatic stellate cells for treating liver fibrosis and portal hypertension. Small. 2015;11:2291–2304.
  • Toriyabe N, Sakurai Y, Kato A, et al. The delivery of small interfering RNA to hepatic stellate cells using a lipid nanoparticle composed of a vitamin A-scaffold lipid-like material. J Pharm Sci. 2017;106:2046–2052.
  • Yamada T, Iwasaki Y, Tada H, et al. Nanoparticles for the delivery of genes and drugs to human hepatocytes. Nat Biotechnol. 2003;21:885–890.
  • Barraud L, Merle P, Soma E, et al. Increase of doxorubicin sensitivity by doxorubicin-loading into nanoparticles for hepatocellular carcinoma cells in vitro and in vivo. J Hepatol. 2005;42:736–743.
  • Couvreur P, Kante B, Lenaerts V, et al. Tissue distribution of antitumor drugs associated with polyalkylcyanoacrylate nanoparticles. J Pharm Sci. 1980;69:199–202.
  • Couvreur P, Kante B, Grislain L, et al. Toxicity of polyalkylcyanoacrylate nanoparticles II: doxorubicin-loaded nanoparticles. J Pharm Sci. 1982;71:790–792.
  • Chiannilkulchai N, et al. Nanoparticles of doxorubicin: colloidal vectors in the treatment of hepatic metastases in animals. Bull Cancer. 1989;76:845–848.
  • Verdun C, Brasseur F, Vranckx H, et al. Tissue distribution of doxorubicin associated with polyisohexylcyanoacrylate nanoparticles. Cancer Chemother Pharmacol. 1990;26:13–18.
  • Trochon-Joseph V, et al. 2016. Mechanistic study of the relative cytotoxicity of doxorubicin loaded nanoparticle formulation compared to free doxorubicin in hepatocellular carcinoma (HCC) cell lines. AACR Annual Meeting, New Orleans, Louisiana, USA, Volume April 16-20, p. Abstract 2143.
  • de Verdière AC, Dubernet C, Némati F, et al. Reversion of multidrug resistance with polyalkylcyanoacrylate nanoparticles: towards a mechanism of action. Br J Cancer. 1997;76:198–205.
  • Merle P, Si Ahmed S, Habersetzer F, et al. Phase 1 study of intra-arterial hepatic (IAH) delivery of doxorubicin-transdrug (DT) for patients with advanced hepatocellular carcinoma (HCC). J Clin Oncol. 2006;24:14094.
  • Bioalliance, 2009. Doxorubicin Transdrug: significant increased survival rate in patients with advanced hepatocellular carcinoma treated in a phase II clinical trial. Bioalliance web document.
  • Onxeo 2017. Onxeo Announces Top-Line Results from ReLive Phase III Study of Livatag® in Advanced Hepatocellular Carcinoma. [En ligne] Available at: https://www.onxeo.com/onxeo-announces-top-line-results-relive-phase-iii-study-livatag-advanced-hepatocellular-carcinoma/ [Accès le 5 December 2018].
  • Love KT, Mahon KP, Levins CG, et al. Lipid-like materials for low-dose, in vivo gene silencing. Proc Natl Acad Sci USA. 2010;107:1864–1869.
  • Akinc A, Goldberg M, Qin J, et al. Development of lipidoid-siRNA formulations for systemic delivery to the liver. Mol Ther. 2009;17:872–879.
  • Schroeder A, Levins CG, Cortez C, et al. Lipid-based nanotherapeutics for siRNA delivery. J Intern Med. 2010;267:9–21.
  • Wang J, Lu Z, Wientjes M, et al. Delivery of siRNA therapeutics: barriers and carriers. AAPS J. 2010;12:492–503.
  • Semple SC, Akinc A, Chen J, et al. Rational design of cationic lipids for siRNA delivery. Nat Biotechnol. 2010;28:172–176.
  • Wan C, Allen T, Cullis P. Lipid nanoparticle delivery systems for siRNA-based therapeutics. Drug Deliv and Transl Res. 2014;4:74–83.
  • Cheng X, Lee R. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Adv Drug Deliv Rev. 2016;99:129–137.
  • Snoeys J, Lievens J, Wisse E, et al. Species differences in transgene DNA uptake in hepatocytes after adenoviral transfer correlate with the size of endothelial fenestrae. Gene Ther. 2007;14:604–612.
  • Lievens J, Snoeys J, Vekemans K, et al. The size of sinusoidal fenestrae is a critical determinant of hepatocyte transduction after adenoviral gene transfer. Gene Ther. 2004;11:1523–1531.
  • Sato Y, Note Y, Maeki M, et al. Elucidation of physicochemical properties and potency of siRNA-loaded small-sized lipid nanoparticles for siRNA delivery. J Cont Rel. 2016;229:48–57.
  • Chen S, Tam YYC, Lin PJC, et al. Influence of particle size on the in vivo potency of lipid nanoparticle formulations of siRNA. J Control Release. 2016;235:236–244.
  • Watanabe T. In vivo therapeutic potential of Dicer-hunting siRNAs targeting infectious hepatitis C virus. Scientific Reports. 2014;4:1–11.
  • Jayaraman M, Ansell SM, Mui BL, et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew Chem Int Ed Engl. 2012;51:8529–8533.
  • Maier MA, Jayaraman M, Matsuda S, et al. Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics. Mol Ther. 2013;21:1570–1578.
  • Zimmermann TS, Lee ACH, Akinc A, et al. RNAi-mediated gene silencing in non-human primates. Nature. 2006;441:111–114.
  • Frank-Kamenetsky M, Grefhorst A, Anderson NN, et al. Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. PNAS. 2008;105:11915–11920.
  • Geisbert TW, Lee ACH, Robbins M, et al. Postexposure protection of non-human primates against a lethal Ebola virus challenge with RNA interference: a proof-of-concept study. Lancet. 2010;375:1896–1905.
  • Yu B, Hsu S-H, Zhou C, et al. Lipid nanoparticles for hepatic delivery of small interfering RNA. Biomaterials. 2012;33:5924–5934.
  • Zhang J, Pei Y, Zhang H, et al. Assessing the heterogeneity level in lipid nanoparticles for siRNA delivery: size-based separation, compositional heterogeneity, and impact on bioperformance. Mol Pharmaceutics. 2013;10:397–405.
  • Mui BL, Tam YK, Jayaraman M, et al. Influence of polyethylene glycol lipid desorption rates on pharmacokinetics and pharmacodynamics of siRNA lipid nanoparticles. Mol Ther Nucliec Acids. 2013;2:e139.
  • Akinc A, Querbes W, De S. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligandbased mechanisms. Mol Ther. 2010;18:1357–1364.
  • Song LY, Ahkong QF, Rong Q, et al. Characterization of the inhibitory effect of PEG-lipid conjugates on the intracellular delivery of plasmid and antisense DNA mediated by cationic lipid liposomes. Biochim Biophys Acta. 2002;1558:1–13.
  • Tam Y, Chen S, Cullis P. Advances in lipid nanoparticles for siRNA delivery. Pharmaceutics. 2013;5:498–507.
  • Nechev L, Price S. 2015. Compositions and methods for the manufacture of lipid nanoparticles. USA, Brevet n° WO 2015/048020 A2.
  • Gertz MA, Benson MD, Dyck PJ, et al. Diagnosis, prognosis, and therapy of transthyretin amyloidosis. J Am Coll Cardiol. 2015;66:2451–2466.
  • Coelho T, Adams D, Silva A, et al. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N Engl J Med. 2013;369:819–829.
  • Suhr O, et al. Efficacy and safety of patisiran for familial amyloidotic polyneuropathy: a phase II multi-dose study. Orphanet J Rare Dis. 2015;10:109.
  • Adams D, Suhr OB, Dyck PJ. Trial design and rationale for APOLLO, a phase 3, placebo-controlled study of patisiran in patients with hereditary ATTR amyloidosis with polyneuropathy. BMC Neurol. 2017;17:181.
  • Adams D, Gonzalez-Duarte A, O’Riordan WD, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med. 2018;379:11–21.
  • Amidon G, Lennernäs H, Shah V, et al. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12:413–420.
  • Orfi E, Szebeni J. The immune system of the gut and potential adverse effects of oral nanocarriers on its function. Adv Drug Deliv Rev. 2016;106:402–409.
  • Jani P, Halbert G, Langridge J, et al. Nanoparticle uptake by the rat gastrointestinal mucosa: quantitation and particle size dependency. J Pharm Pharmacol. 1990;42:821–826.
  • Presas E, McCartney F, Sultan E, et al. Physicochemical, pharmacokinetic and pharmacodynamic analyses of amphiphilic cyclodextrin-based nanoparticles designed to enhance intestinal delivery of insulin. J Control Release. 2018;286:402–414.
  • Maher S, Mrsny R, Brayden D. Intestinal permeation enhancers for oral peptide delivery. Adv Drug Deliv Rev. 2016;106:277–319.
  • Baluom M, Friedman M, Rubinstein A. The importance of intestinal residence time of absorption enhancer on drug absorption and implication on formulative considerations. Int J Pharm. 1998;176:21–30.
  • Bazile D, Prud'homme C, Bassoullet M‐T, et al. Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J Pharm Sci. 1995;84:493–498.
  • Vittaz M, Bazile D, Spenlehauer G, et al. Effect of PEO surface density on long-circulating PLA-PEO nanoparticles which are very low complement activators. Biomaterials. 1996;17:1575–1561.
  • Nicolas J, Mura S, Brambilla D, et al. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev. 2013;42:1147–1235.
  • Hrkach J, Von Hoff D, Ali MM, et al. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci Transl Med. 2012;4:128ra39.
  • Pridgen EM, Alexis F, Kuo TT, et al. Transepithelial transport of Fc-targeted nanoparticles. Sci Trans Med. 2013;5:213ra167.
  • Adler A, Leong K. Emerging links between surface nanotechnology and endocytosis: impact on nonviral gene delivery. Nano Today. 2010;5:553–569.
  • Tan P, Luscinskas F, Homer-Vanniasinkam S. Cellular and molecular mechanisms of inflammation and thrombosis. Eur J Vasc Endovasc Surg. 1999;17:373–389.
  • Dobrovolskaia M, McNeil S. Immunological properties of engineered nanomaterials. Nat Nanotechnol. 2007;2:469–478.
  • Aula S, Lakkireddy S, Jamil K, et al. Biophysical, biopharmaceutical and toxicological significance of biomedical nanoparticles. RSC Adv. 2015;5:47830–47859.
  • Landry FB, Bazile DV, Spenlehauer G, et al. Release of the fluorescent marker ProdanR from poly(d,l-lactic acid) nanoparticles coated with albumin or polyvinyl alcohol in model digestive fluids (USP XXII). J Control Release. 1997;44:227–236.
  • Tobio M, et al. The role of PEG on the stability in digestive fluids and in vivo fate of PEG-PLA nanoparticles following oral administration. Colloids Surf B Biointerfaces. 2000;18:315–323.
  • Hussain N, Jaitley V, Florence A. Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics. Adv Drug Deliv Rev. 2001;50:107–142.
  • Lakkireddy H, Bazile D. Building the design, translation and development principles of polymeric nanomedicines using the case of clinically advanced poly(lactide(glycolide))–poly(ethylene glycol) nanotechnology as a model: an industrial viewpoint. Adv Drug Deliv Rev. 2016;107:289–332.
  • Zolnik B, Sadrieh N. Regulatory perspective on the importance of ADME assessment of nanoscale material containing drugs. Adv Drug Deliv Rev. 2009;61:422–427.
  • Harashima H, Iida S, Urakami Y, et al. Optimization of antitumor effect of liposomally encapsulated doxorubicin based on simulations by pharmacokinetic/pharmacodynamic modeling. J Control Release. 1999;61:93–106.
  • Stern ST, Hall JB, Yu LL, et al. Translational considerations for cancer nanomedicine. J Control Release. 2010;146:164–174.
  • Zeng L, An L, Wu X,. Modeling drug-carrier interaction in the drug release from nanocarriers. J Drug Deliv. 2011;2011:1–15.
  • Emile C, Bazile D, Herman F, et al. Encapsulation of oligonucleotides in stealth Me.PEG-PLA50 nanoparticles by complexation with structured oligopeptides. Drug Deliv. 1996;3:187–195.
  • Harada A, Kataoka K. Pronounced activity of enzymes through the incorporation into the core of polyion complex micelles made from charged block copolymers. J Control Release. 2001;72:85–91.
  • Perez C, Sanchez A, Putnam D, et al. Poly(lactic acid)-poly(ethylene glycol) nanoparticles as new carriers for the delivery of plasmid DNA. J Control Release. 2001;75:211–224.
  • Giovino C, Ayensu I, Tetteh J, et al. Development and characterisation of chitosan films impregnated with insulin loaded PEG-b-PLA nanoparticles (NPs): a potential approach for buccal delivery of macromolecules. Int J Pharm. 2012;428:143–151.
  • Diou O, Greco S, Beltran T, et al. A method to quantify the affinity of cabazitaxel for PLA-PEG nanoparticles and investigate the influence of the nano-assembly structure on the drug/particle association. Pharm Res. 2015;32:3188–3200.
  • Verrecchia T. 1998. Mécanisme de libération in vitro d'une molécule hydrophobe encapsulée dans des nanoparticules d'un co-polymère de poly(acide lactique) et de poly(ethylène glycol) [PLAPEG], s.l.: s.n.
  • Panyam J, Williams D, Dash A, et al. Solid-state solubility influences encapsulation and release of hydrophobic drugs from PLGA/PLA nanoparticles. J Pharm Sci. 2004;93:1804–1814.
  • Lenaerts V, Couvreur P, Christiaens-Leyh D, et al. Degradationo f poly (isobutyl cyanoacrylate) nanoparticles. Biomaterials. 1984;5:65–68.
  • Grangier J-L, Puygrenier M, Gautier J, et al. Nanoparticles as carriers for growth hormone releasing factor. J Control Release. 1991;15:3–13.
  • Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nature Mater. 2013;12:991–1003.
  • Ulbrich K, Subr V. Polymeric anticancer drugs with pH-controlled activation. Adv Drug Deliv Rev. 2004;56:1023–1050.
  • Zou J, Zhang F, Zhang S, et al. Poly(ethylene oxide)-block-polyphosphoester-graft-paclitaxel conjugates with acid-labile linkages as a pH-sensitive and functional nanoscopic platform for paclitaxel delivery. Adv Healthcare Mater. 2014;3:441–448.
  • Choy C, Geruntho J, Davis A, et al. Tunable pH-sensitive linker for controlled release. Bioconjugate Chem. 2016;27:824–830.
  • Schafer F, Buettner G. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med. 2001;30:1191–1212.
  • Meng F, Hennink W, Zhong Z. Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials. 2009;30:2180–2198.
  • Han H, Valdepérez D, Jin Q, et al. Dual enzymatic reaction-assisted gemcitabine delivery systems for programmed pancreatic cancer therapy. ACS Nano. 2017;11:1281–1291.
  • Li H, Wang P, Deng Y, et al. Combination of active targeting, enzyme-triggered release and fluorescent dye into gold nanoclusters for endomicroscopy-guided photothermal/photodynamic therapy to pancreatic ductal adenocarcinoma. Biomaterials. 2017;139:30–38.
  • Tong R, Tang L, Ma L, et al. Smart chemistry in polymeric nanomedicine. Chem Soc Rev. 2014;43:6982–7012.
  • Yuan Y, Zhang C-J, Xu S, et al. A self-reporting AIE probe with a built-in singlet oxygen sensor for targeted photodynamic ablation of cancer cells. Chem Sci. 2016;7:1862–1866.
  • Bensaid F, Thillaye du Boullay O, Amgoune A, et al. Y-Shaped mPEG-PLA cabazitaxel conjugates: well-controlled synthesis by organocatalytic approach and self-assembly into interface drug-loaded core − corona nanoparticles. Biomacromolecules. 2013;14:1189–1198.
  • Lakkireddy HBD. Drug delivery design for intravenous route with integrated physicochemistry, pharmacokinetics and pharmacodynamics: Illustration with the case of taxane therapeutics. Adv Drug Deliv Rev. 2014;71:34–57.
  • Lim J, Karnik R. Optimizing the discovery and clinical translation of nanoparticles: could microfluidics hold the key? Nanomedicine (Lond). 2014;9:1113–1116.
  • Colombo S, Beck-Broichsitter M, Bøtker JP, et al. Transforming nanomedicine manufacturing toward quality by design and microfluidics. Adv Drug Deliv Rev. 2018;128:115–131.
  • Kang X, Luo C, Wei Q, et al. Mass production of highly monodisperse polymeric nanoparticles by parallel flow focusing system. Microfluid Nanofluid. 2013;15:337–345.
  • Li X, Jiang X. Microfluidics for producing poly (lactic-co-glycolic acid)-based pharmaceutical nanoparticles. Adv Drug Deliv Rev. 2018;128:101–114.
  • Bazile DV. Nanotechnologies in drug delivery – an industrial perspective. J Drug Deliv Sci Tech. 2014;24:12–21.
  • Desgouilles S, Vauthier C, Bazile D, et al. The design of nanoparticles obtained by solvent evaporation: a comprehensive study. Langmuir. 2003;19:9504–9510.
  • Meunier M, Goupil A, Lienard P. Predicting drug loading in PLA-PEG nanoparticles. Int J Pharm. 2017;526:157–166.
  • Eaton M, Levy L, Fontaine O. Delivering nanomedicines to patients: a practical guide. Nanomedicine. 2015;11:983–992.
  • Gautam A, Pan X. The changing model of big pharma: impact of key trends. Drug Disc Today. 2016;21:379–384.
  • FDA, 2017. Use of Real-World Evidence to Support Regulatory Decision-Making for Medical Devices, s.l.: USFDA.
  • Krause J, Saver R. Real-world evidence in the real world: beyond the FDA. Am J Law Med. 2018;44:161–179.
  • Lorenzer C, Dirin M, Winkler A-M, et al. Going beyond the liver: progress and challenges of targeted delivery of siRNA therapeutics. J Control Release. 2015;203:1–15.
  • Passaro F, Testa G, Ambrosone L, et al. Nanotechnology-based cardiac targeting and direct cardiac reprogramming: the betrothed. Stem Cells Int. 2017;2017:1–12.
  • Rhee J-W, Wu J. Advances in nanotechnology for the management of coronary artery disease. Trends Cardiovasc Med. 2013;23:39–45.
  • Ambesh P, Campia U, Obiagwu C, et al. Nanomedicine in coronary artery disease. Indian Heart J. 2017;69:244–251.
  • Saraiva C, Praça C, Ferreira R, et al. Nanoparticle-mediated brain drug delivery: overcoming blood–brain barrier to treat neurodegenerative diseases. J Control Release. 2016;235:34–47.
  • Grabrucker A, et al. Nanoparticle transport across the blood brain barrier. Tissue Barriers. 2016;4:1–18.
  • Brambilla D, Le Droumaguet B, Nicolas J, et al. Nanotechnologies for Alzheimer's disease: diagnosis, therapy, and safety issues. Nanomedicine. 2011;7:521–540.
  • Matilda A, Oskari E, Topias S, et al. A review on ophthalmology using nanotechnology. J Nanomed Nanotechnol. 2015;272:6.
  • Cetinel S, Montemagno C. Nanotechnology applications for glaucoma. Asia Pac J Ophthalmol (Phila). 2016;5:70–78.
  • Cevc G, Vierl U. Nanotechnology and the transdermal route: a state of the art review and critical appraisal. J Control Release. 2010;141:277–299.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.