356
Views
25
CrossRef citations to date
0
Altmetric
Review Article

Chitosan-based nanotherapeutics for ovarian cancer treatment

, , , &
Pages 839-852 | Received 10 Aug 2018, Accepted 29 Dec 2018, Published online: 11 Feb 2019

References

  • Lakshmanan V-K, Snima KS, Bumgardner JD, et al. Chitosan-based nanoparticles in cancer therapy. In: Chitosan for biomaterials I. Berlin: Springer; 2011. p. 55–91.
  • Bertrand N, Wu J, Xu X, et al. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2014;66:2–25.
  • Sanna V, Pala N, Sechi M. Targeted therapy using nanotechnology: focus on cancer. Int J Nanomed. 2014;9:467.
  • Dash M, Chiellini F, Ottenbrite RM, et al. Chitosan—a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci. 2011;36:981–1014.
  • Cheung R, Ng T, Wong J, et al. Chitosan: an update on potential biomedical and pharmaceutical applications. Mar Drugs. 2015;13:5156–5186.
  • Gerentes P, Vachoud L, Doury J, et al. Study of a chitin-based gel as injectable material in periodontal surgery. Biomaterials. 2002;23:1295–1302.
  • Ahsan SM, Thomas M, Reddy KK, et al. Chitosan as biomaterial in drug delivery and tissue engineering. Int J Biol Macromol. 2018;110:97–109.
  • Patrulea V, Ostafe V, Borchard G, et al. Chitosan as a starting material for wound healing applications. Eur J Pharm Biopharm. 2015;97:417–426.
  • Pereira P, Pedrosa SS, Correia A, et al. Biocompatibility of a self-assembled glycol chitosan nanogel. Toxicol in Vitro. 2015;29:638–646.
  • Onishi H, Machida Y. Biodegradation and distribution of water-soluble chitosan in mice. Biomaterials. 1999;20:175–182.
  • Mourya V, Inamdar NN. Chitosan-modifications and applications: opportunities galore. React Funct Polym. 2008;68:1013–1051.
  • Gorzelanny C, Pöppelmann B, Pappelbaum K, et al. Human macrophage activation triggered by chitotriosidase-mediated chitin and chitosan degradation. Biomaterials. 2010;31:8556–8563.
  • Seferian PG, Martinez ML. Immune stimulating activity of two new chitosan containing adjuvant formulations. Vaccine. 2000;19:661–668.
  • Kean T, Thanou M. Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev. 2010;62:3–11.
  • Chen P-G, Huang Z-H, Sun Z-Y, et al. Chitosan nanoparticles based nanovaccines for cancer immunotherapy. Pure Appl Chem. 2017;89:931–939.
  • Shi G-N, Zhang C-N, Xu R, et al. Enhanced antitumor immunity by targeting dendritic cells with tumor cell lysate-loaded chitosan nanoparticles vaccine. Biomaterials. 2017;113:191–202.
  • Han HD, Byeon Y, Jang JH, et al. In vivo stepwise immunomodulation using chitosan nanoparticles as a platform nanotechnology for cancer immunotherapy. Sci Rep. 2016;6:38348.
  • Saravanakumar K, Jeevithan E, Chelliah R, et al. Zinc-chitosan nanoparticles induced apoptosis in human acute T-lymphocyte leukemia through activation of tumor necrosis factor receptor CD95 and apoptosis-related genes. Int J Biol Macromol. 2018;119:1144–1153.
  • Anandhakumar S, Krishnamoorthy G, Ramkumar KM, et al. Preparation of collagen peptide functionalized chitosan nanoparticles by ionic gelation method: an effective carrier system for encapsulation and release of doxorubicin for cancer drug delivery. Mater Sci Eng: C. 2017;70:378–385.
  • Taghavi S, Ramezani M, Alibolandi M, et al. Chitosan-modified PLGA nanoparticles tagged with 5TR1 aptamer for in vivo tumor-targeted drug delivery. Cancer Lett. 2017;400:1–8.
  • Deng Z, Zhen Z, Hu X, et al. Hollow chitosan–silica nanospheres as pH-sensitive targeted delivery carriers in breast cancer therapy. Biomaterials. 2011;32:4976–4986.
  • Jee J-P, Na JH, Lee S, et al. Cancer targeting strategies in nanomedicine: design and application of chitosan nanoparticles. Curr Opin Solid State Mater Sci. 2012;16:333–342.
  • Ghaz-Jahanian MA, Abbaspour-Aghdam F, Anarjan N, et al. Application of chitosan-based nanocarriers in tumor-targeted drug delivery. Mol Biotechnol. 2015;57:201–218.
  • Xu Y, Du Y. Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. Int J Pharm. 2003;250:215–226.
  • Zheng Y, Yang W, Wang C, et al. Nanoparticles based on the complex of chitosan and polyaspartic acid sodium salt: preparation, characterization and the use for 5-fluorouracil delivery. Eur J Pharm Biopharm. 2007;67:621–631.
  • Park K, Kim J-H, Nam YS, et al. Effect of polymer molecular weight on the tumor targeting characteristics of self-assembled glycol chitosan nanoparticles. J Control Rel. 2007;122:305–314.
  • Duceppe N, Tabrizian M. Advances in using chitosan-based nanoparticles for in vitro and in vivo drug and gene delivery. Expert Opin Drug Deliv. 2010;7:1191–1207.
  • Alves N, Mano J. Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. Int J Biol Macromol. 2008;43:401–414.
  • Hosseinipour SL, Khiabani MS, Hamishehkar H, et al. Enhanced stability and catalytic activity of immobilized a-amylase on modified Fe3O4 nanoparticles for potential application in food industries. J Nanopart Res. 2015;17:382.
  • Valenta C, Christen B, Bernkop‐Schnürch A. Chitosan-EDTA conjugate: a novel polymer for topical gels. J Pharm Pharmacol. 1998;50:445–452.
  • Liu L, Mirandola L, Chiriva-Internati M, et al. CdS quantum dot-chitosan-anti SP17 nanohybrid as a potential cancer biomarker. Mater Lett. 2017;199:5–8.
  • Samykutty A, Grizzle WE, Fouts BL, et al. Optoacoustic imaging identifies ovarian cancer using a microenvironment targeted theranostic wormhole mesoporous silica nanoparticle. Biomaterials. 2018;182:114–126.
  • Jinsui Y, Bing S, Muhua L, et al. Carboxymethyl-hexanoyl chitosan nanodroplets for ultrasonic imaging and drug delivery to tumor. Cpd. 2018;24:1682–1688.
  • Gomes CP, Ferreira Lopes CD, Duarte Moreno PM, et al. Translating chitosan to clinical delivery of nucleic acid-based drugs. MRS Bull. 2014;39:60–70.
  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA: Cancer J Clin. 2017;67:7–30.
  • Martín-Cameán M, Delgado-Sánchez E, Piñera A, et al. The role of surgery in advanced epithelial ovarian cancer. Ecancer. 2016;10:619.
  • Webb PM, Jordan SJ. Epidemiology of epithelial ovarian cancer. Best Pract Res Clin Obstet Gynaecol. 2017;41:3–14.
  • Sharifian A, Pourhoseingholi MA, Norouzinia M, et al. Ovarian cancer in Iranian women, a trend analysis of mortality and incidence. Asian Pac J Cancer Prev. 2014;15:10787–10790.
  • Ye H, Karim AA, Loh XJ. Current treatment options and drug delivery systems as potential therapeutic agents for ovarian cancer: a review. Mater Sci Eng: C. 2014;45:609–619.
  • Elit L, Oliver TK, Covens A, et al. Intraperitoneal chemotherapy in the first‐line treatment of women with stage III epithelial ovarian cancer. Cancer. 2007;109:692–702.
  • Babu A, Wang Q, Muralidharan R, et al. Chitosan coated polylactic acid nanoparticle-mediated combinatorial delivery of cisplatin and siRNA/Plasmid DNA chemosensitizes cisplatin-resistant human ovarian cancer cells. Mol Pharm. 2014;11:2720–2733.
  • Rizzo LY, Theek B, Storm G, et al. Recent progress in nanomedicine: therapeutic, diagnostic and theranostic applications. Curr Opin Biotechnol. 2013;24:1159–1166.
  • Moghimi SM, Hunter AC, Murray JC. Nanomedicine: current status and future prospects. FASEB J. 2005;19:311–330.
  • Rahimi M, Safa KD, Alizadeh E, et al. Dendritic chitosan as a magnetic and biocompatible nanocarrier for the simultaneous delivery of doxorubicin and methotrexate to MCF-7 cell line. New J Chem. 2017;41:3177–3189.
  • Li H, Tatematsu K, Somiya M, et al. Development of a macrophage-targeting and phagocytosis-inducing bio-nanocapsule-based nanocarrier for drug delivery. Acta Biomater. 2018;73:412–423.
  • Soni N, Jyoti K, Jain UK, et al. Noscapinoids bearing silver nanocrystals augmented drug delivery, cytotoxicity, apoptosis and cellular uptake in B16F1, mouse melanoma skin cancer cells. Biomed Pharmacother. 2017;90:906–913.
  • Gil MS, Thambi T, Phan VHG, et al. Injectable hydrogel-incorporated cancer cell-specific cisplatin releasing nanogels for targeted drug delivery. J Mater Chem B. 2017;5:7140–7152.
  • Dilnawaz F, Acharya S, Sahoo SK. Recent trends of nanomedicinal approaches in clinics. Int J Pharm. 2018;538(1-2):263–278.
  • Iannazzo D, Pistone A, Salamò M, et al. Graphene quantum dots for cancer targeted drug delivery. Int J Pharm. 2017;518:185–192.
  • Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Rel. 2004;100:5–28.
  • Huang M, Khor E, Lim L-Y. Uptake and cytotoxicity of chitosan molecules and nanoparticles: effects of molecular weight and degree of deacetylation. Pharm Res. 2004;21:344–353.
  • Chae SY, Jang M-K, Nah J-W. Influence of molecular weight on oral absorption of water soluble chitosans. J Control Rel. 2005;102:383–394.
  • Kulkarni AR, Soppimath KS, Aminabhavi TM. Controlled release of diclofenac sodium from sodium alginate beads crosslinked with glutaraldehyde. Pharm Acta Helv. 1999;74:29–36.
  • Hu F-Q, Ren G-F, Yuan H, et al. Shell cross-linked stearic acid grafted chitosan oligosaccharide self-aggregated micelles for controlled release of paclitaxel. Colloids Surf B: Biointerfaces. 2006;50:97–103.
  • Mao H-Q, Roy K, Troung-Le VL, et al. Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J Control Rel. 2001;70:399–421.
  • Fan W, Yan W, Xu Z, et al. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids Surf B: Biointerfaces. 2012;90:21–27.
  • Yhee JY, Koo H, Lee D, et al. Multifunctional chitosan nanoparticles for tumor imaging and therapy. In: Chitosan for biomaterials I. Berlin: Springer; 2011. p. 139–161.
  • Son YJ, Jang JS, Cho YW, et al. Biodistribution and anti-tumor efficacy of doxorubicin loaded glycol-chitosan nanoaggregates by EPR effect. J Control Release. 2003;91:135–145.
  • Yang X, Zhang Y, Hosaka K, et al. VEGF-B promotes cancer metastasis through a VEGF-A–independent mechanism and serves as a marker of poor prognosis for cancer patients. Proc Natl Acad Sci. 2015;2015:03500.
  • Kobayashi H, Watanabe R, Choyke PL. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics. 2014;4:81.
  • Prabaharan M. Chitosan-based nanoparticles for tumor-targeted drug delivery. Int J Biol Macromol. 2015;72:1313–1322.
  • Zhou L, Du L, Chen X, et al. The antitumor and antimetastatic effects of N-trimethyl chitosan-encapsulated camptothecin on ovarian cancer with minimal side effects. Oncol Rep. 2010;24:941–948.
  • Zarouni M, Salehi R, Akbarzadeh A, et al. Biocompatible polymer coated paramagnetic nanoparticles for doxorubicin delivery: synthesis and anticancer effects against human breast cancer cells. Int J Polym Mater Polym Biomater. 2015;64:718–726.
  • Rahimi M, et al. Combination chemotherapy of MCF7 cells by dendritic ionic liquid-chitosan grafted mPEG as a multi-drug nanocarrier. Polym Chem. 2017;8:7333–7350.
  • Emami J, Rezazadeh M, Rostami M, et al. Co-delivery of paclitaxel and α-tocopherol succinate by novel chitosan-based polymeric micelles for improving micellar stability and efficacious combination therapy. Drug Dev Ind Pharm. 2015;41:1137–1147.
  • Calderini A, Pessine FBT, Franchi GC, et al. Preparation and characterisation of 5–fluorouracil containing PLGA nanospheres coated with chitosan, for drug delivery. Ijnt. 2012;9:851–861.
  • Boca SC, Potara M, Toderas F, et al. Uptake and biological effects of chitosan-capped gold nanoparticles on Chinese Hamster Ovary cells. Mater Sci Eng: C. 2011;31:184–189.
  • Park JH, Saravanakumar G, Kim K, et al. Targeted delivery of low molecular drugs using chitosan and its derivatives. Adv Drug Deliv Rev. 2010;62:28–41.
  • Yan E, Cao M, Wang Y, et al. Gold nanorods contained polyvinyl alcohol/chitosan nanofiber matrix for cell imaging and drug delivery. Mater Sci Eng: C. 2016;58:1090–1097.
  • Lee E, Kim H, Lee I-H, et al. In vivo antitumor effects of chitosan-conjugated docetaxel after oral administration. J Control Release. 2009;140:79–85.
  • Potara M, Nagy-Simon T, Craciun AM, et al. Carboplatin-loaded, Raman-encoded chitosan-coated silver nanotriangles as multimodal traceable nanotherapeutic delivery systems and pH reporters inside human ovarian cancer cells. ACS Appl Mater Interfaces. 2017;9(38):32565–32576.
  • Li XYi, Kong XYe, Zhang J, et al. A novel composite hydrogel based on chitosan and inorganic phosphate for local drug delivery of camptothecin nanocolloids. J Pharm Sci. 2011;100:232–241.
  • Hu R, Zheng H, Cao J, et al. Synthesis and in vitro characterization of carboxymethyl chitosan-CBA-doxorubicin conjugate nanoparticles as pH-sensitive drug delivery systems. J Biomed Nanotechnol. 2017;13:1097–1105.
  • Hu Y, Jiang X, Ding Y, et al. Synthesis and characterization of chitosan-poly(acrylic acid) nanoparticles. Biomaterials. 2002;23:3193–3201.
  • Vergara D, Bellomo C, Zhang X, et al. Lapatinib/paclitaxel polyelectrolyte nanocapsules for overcoming multidrug resistance in ovarian cancer. Nanomed: Nanotechnol Biol Med. 2012;8:891–899.
  • Cafaggi S, Russo E, Stefani R, et al. Preparation and evaluation of nanoparticles made of chitosan or N-trimethyl chitosan and a cisplatin-alginate complex. J Control Release. 2007;121:110–123.
  • Keresztessy Z, Bodnár M, Ber E, et al. Self-assembling chitosan/poly-γ-glutamic acid nanoparticles for targeted drug delivery. Colloid Polym Sci. 2009;287:759–765.
  • Yang Y, Wang S, Wang Y, et al. Advances in self-assembled chitosan nanomaterials for drug delivery. Biotechnol Adv. 2014;32:1301–1316.
  • Park J-k, Kim T-H, Nam J-P, et al. Bile acid conjugated chitosan oligosaccharide nanoparticles for paclitaxel carrier. Macromol Res. 2014;22:310–317.
  • Sharma D, Singh J. Synthesis and characterization of fatty acid grafted chitosan polymer and their nanomicelles for nonviral gene delivery applications. Bioconjugate Chem. 2017;28:2772–2783.
  • Hu F-Q, Wu X-l, Du Y-Z, et al. Cellular uptake and cytotoxicity of shell crosslinked stearic acid-grafted chitosan oligosaccharide micelles encapsulating doxorubicin. Eur J Pharm Biopharm. 2008;69:117–125.
  • Soo PL, Cho J, Grant J, et al. Drug release mechanism of paclitaxel from a chitosan–lipid implant system: effect of swelling, degradation and morphology. Eur J Pharm Biopharm. 2008;69:149–157.
  • Vassileva V, Grant J, De Souza R, et al. Novel biocompatible intraperitoneal drug delivery system increases tolerability and therapeutic efficacy of paclitaxel in a human ovarian cancer xenograft model. Cancer Chemother Pharmacol. 2007;60:907–914.
  • Grant J, Blicker M, Piquette-Miller M, et al. Hybrid films from blends of chitosan and egg phosphatidylcholine for localized delivery of paclitaxel. J Pharm Sci. 2005;94:1512–1527.
  • Uchegbu IF, Schätzlein AG, Tetley L, et al. Polymeric chitosan-based vesicles for drug delivery. J Pharm Pharmacol. 1998;50:453–458.
  • Hu Y-W, Du Y-Z, Liu N, et al. Selective redox-responsive drug release in tumor cells mediated by chitosan based glycolipid-like nanocarrier. J Control Release. 2015;206:91–100.
  • Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B: Biointerfaces. 2010;75:1–18.
  • Rahimi M, Safa KD, Salehi R. Co-delivery of doxorubicin and methotrexate by dendritic chitosan-g-mPEG as a magnetic nanocarrier for multi-drug delivery in combination chemotherapy. Polym Chem. 2017;8:7333–7350.
  • Li TSC, Yawata T, Honke K. Efficient siRNA delivery and tumor accumulation mediated by ionically cross-linked folic acid–poly (ethylene glycol)–chitosan oligosaccharide lactate nanoparticles: for the potential targeted ovarian cancer gene therapy. Eur J Pharm Sci. 2014;52:48–61.
  • Qu G, Yao Z, Zhang C, et al. PEG conjugated N-octyl-O-sulfate chitosan micelles for delivery of paclitaxel: in vitro characterization and in vivo evaluation. Eur J Pharm Sci. 2009;37:98–105.
  • Byrne JD, Betancourt T, Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev. 2008;60:1615–1626.
  • Dufes C, Muller J-M, Couet W, et al. Anticancer drug delivery with transferrin targeted polymeric chitosan vesicles. Pharm Res. 2004;21:101–107.
  • Yang Y, Zhao X, Li X, et al. Effects of anti‑CD44 monoclonal antibody IM7 carried with chitosan polylactic acid-coated nanoparticles on the treatment of ovarian cancer. Oncol Lett. 2017;13:99–104.
  • Pradeep P, Choonara Y, Kumar P, et al. “On-The-Spot” arresting of chondroitin sulphate proteoglycans: implications for ovarian adenocarcinoma recognition and intervention. Ijms. 2016;17:1136.
  • Hee-Dong H, Mangala LS, Lee JW, et al. Targeted gene silencing using RGD-labeled chitosan nanoparticles. Clin Cancer Res. 2010;16:3910–3922.
  • El-Sayed NS, Shirazi AN, El-Meligy MG, et al. Design, synthesis, and evaluation of chitosan conjugated GGRGDSK peptides as a cancer cell-targeting molecular transporter. Int J Biol Macromol. 2016;87:611–622.
  • Kim Y-M, Park S-C, Jang M-K. Targeted gene delivery of polyethyleneimine-grafted chitosan with RGD dendrimer peptide in αvβ3 integrin-overexpressing tumor cells. Carbohydr Polym. 2017;174:1059–1068.
  • Zheng Y, Cai Z, Song X, et al. Preparation and characterization of folate conjugated N-trimethyl chitosan nanoparticles as protein carrier targeting folate receptor: in vitro studies. J Drug Target. 2009;17:294–303.
  • Luesakul U, Puthong S, Neamati N, et al. pH-responsive selenium nanoparticles stabilized by folate-chitosan delivering doxorubicin for overcoming drug-resistant cancer cells. Carbohydr Polym. 2018;181:841–850.
  • Boca-Farcau S, Potara M, Simon T, et al. Folic acid-conjugated, SERS-labeled silver nanotriangles for multimodal detection and targeted photothermal treatment on human ovarian cancer cells. Mol Pharm. 2014;11:391–399.
  • Chomoucka J, Drbohlavova J, Huska D, et al. Magnetic nanoparticles and targeted drug delivering. Pharmacol Res. 2010;62:144–149.
  • Mahesh AG, Narsireddy A, Madhusudana Rao N, et al. A novel approach to design chitosan functionalized Fe 3 O 4 nanoparticles for pH responsive delivery of doxorubicin for cancer therapy. J Magn Magn Mater. 2017;448:199–207.
  • Javid A, Ahmadian S, Saboury AA, et al. Chitosan-coated superparamagnetic iron oxide nanoparticles for doxorubicin delivery: synthesis and anticancer effect against human ovarian cancer cells. Chem Biol Drug Des. 2013;82:296–306.
  • Kritchenkov AS, Andranovitš S, Skorik YA. Chitosan and its derivatives: vectors in gene therapy. Russ Chem Rev. 2017;86:231.
  • Jayakumar R, Chennazhi KP, Muzzarelli RAA, et al. Chitosan conjugated DNA nanoparticles in gene therapy. Carbohydr Polym. 2010;79:1–8.
  • Kiang T, Wen J, Lim HW, et al. The effect of the degree of chitosan deacetylation on the efficiency of gene transfection. Biomaterials. 2004;25:5293–5301.
  • Varshosaz J. The promise of chitosan microspheres in drug delivery systems. Expert Opin Drug Deliv. 2007;4:263–273.
  • Yun YH, Jiang H, Chan R, et al. Sustained release of PEG-g-chitosan complexed DNA from poly (lactide-co-glycolide). J Biomater Sci Polym Ed. 2005;16:1359–1378.
  • Yang Y, Wang Z, Li M, et al. Chitosan/pshRNA plasmid nanoparticles targeting MDR1 gene reverse paclitaxel resistance in ovarian cancer cells. J Huazhong Univ Sci Technol [Med Sci]. 2009;29:239–242.
  • Lee D, Lockey R, Mohapatra S. Folate receptor-mediated cancer cell specific gene delivery using folic acid-conjugated oligochitosans. J Nanosci Nanotechnol. 2006;6:2860–2866.
  • Wang L, Wu W, Wang J, et al. Highly efficient Gab2 siRNA delivery to ovarian cancer cells mediated by chitosan–polyethyleneimine nanoparticles. J Mater Chem B. 2016;4:273–281.
  • Janes K, Calvo P, Alonso M. Polysaccharide colloidal particles as delivery systems for macromolecules. Adv Drug Deliv Rev. 2001;47:83–97.
  • Katas H, Alpar HO. Development and characterisation of chitosan nanoparticles for siRNA delivery. J Control Release. 2006;115:216–225.
  • Steg AD, Katre AA, Goodman B, et al. Targeting the notch ligand JAGGED1 in both tumor cells and stroma in ovarian cancer. Clin Cancer Res. 2011;17:5674–5685.
  • Darvishi MH, Nomani A, Hashemzadeh H, et al. Targeted DNA delivery to cancer cells using a biotinylated chitosan carrier. Biotechnol Appl Biochem. 2017;64:423–432.
  • de Souza RHFV, Picola IPD, Shi Q, et al. Diethylaminoethyl-chitosan as an efficient carrier for siRNA delivery: improving the condensation process and the nanoparticles properties. Int J Biol Macromol. 2018;119:186–197.
  • Gharpure KM, Chu KS, Bowerman CJ, et al. Metronomic docetaxel in PRINT nanoparticles and EZH2 silencing have synergistic antitumor effect in ovarian cancer. Mol Cancer Ther. 2014;13:1750–7175.
  • Kim GH, Won JE, Byeon Y, et al. Selective delivery of PLXDC1 small interfering RNA to endothelial cells for anti-angiogenesis tumor therapy using CD44-targeted chitosan nanoparticles for epithelial ovarian cancer. Drug Deliv. 2018;25:1394–1402.
  • Yeung T-L, Leung CS, Mok SC. CAF reprogramming inhibits ovarian cancer progression. Cell Cycle. 2014;13:3783–3784.
  • Leung CS, Yeung TL, Yip KP, et al. Calcium-dependent FAK/CREB/TNNC1 signalling mediates the effect of stromal MFAP5 on ovarian cancer metastatic potential. Nat Commun. 2014;5:5092.
  • Leung CS, Yeung TL, Yip KP, et al. Cancer-associated fibroblasts regulate endothelial adhesion protein LPP to promote ovarian cancer chemoresistance. J Clin Invest. 2017;128:589–606.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.