346
Views
7
CrossRef citations to date
0
Altmetric
Review Articles

Emerging role of nanomedicine in the treatment of neuropathic pain

, , , &
Pages 11-22 | Received 19 Sep 2018, Accepted 22 Feb 2019, Published online: 22 Jul 2019

References

  • Jensen TS, Baron R, Haanpää M, et al. A new definition of neuropathic pain. Pain. 2011;152:2204–2205.
  • Gilron I, Baron R, Jensen T, editors. Neuropathic pain: principles of diagnosis and treatment. Mayo Clinic Proceedings; 2015: Elsevier.
  • McCarberg B, D’Arcy Y, Parsons B, et al. Neuropathic pain: a narrative review of etiology, assessment, diagnosis, and treatment for primary care providers. Curr Med Res Opin. 2017;33:1361–1369.
  • Cohen SP, Mao J. Neuropathic pain: mechanisms and their clinical implications. BMJ. 2014;348:f7656–f7612.
  • Binder A, Baron R. The pharmacological therapy of chronic neuropathic pain. Deutsches Aerzteblatt Int. 2016;113:616–625.
  • Finnerup NB, Attal N, Haroutounian S, et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol. 2015;14:162–173.
  • Colloca L, Ludman T, Bouhassira D, et al. Neuropathic pain. Nat Rev Dis Primers. 2017;3:17002.
  • Berger A, Dukes EM, Oster G. Clinical characteristics and economic costs of patients with painful neuropathic disorders. J Pain. 2004;5:143–149.
  • Mulla SM, Buckley DN, Moulin DE, et al. Management of chronic neuropathic pain: a protocol for a multiple treatment comparison meta-analysis of randomised controlled trials. BMJ Open. 2014;4:e006112.
  • Tiwari V, Yang F, He S-Q, et al. Activation of peripheral μ-opioid receptors by dermorphin [d-Arg2, Lys4](1–4) amide leads to modality-preferred inhibition of neuropathic pain. Anesthesiology. 2016;124:706–720.
  • Harden N, Cohen M. Unmet needs in the management of neuropathic pain. J Pain Symptom Manage. 2003;25:S12–SS7.
  • Kabu S, Gao Y, Kwon BK, et al. Drug delivery, cell-based therapies, and tissue engineering approaches for spinal cord injury. J Control Release. 2015;219:141–154.
  • Backonja M, Woolf CJ. Future directions in neuropathic pain therapy: closing the translational loop. The Oncologist. 2010;15:24–29.
  • Sprintz M, Tasciotti E, Allegri M, et al. Nanomedicine: ushering in a new era of pain management. Eur J Pain Supple. 2011;5:317–322.
  • Cusato M, Allegri M, Niebel T, et al. Flip-flop kinetics of ropivacaine during continuous epidural infusion influences its accumulation rate. Eur J Clin Pharmacol. 2011;67:399–406.
  • Breggin LK, Falkner R, Pendergrass J, et al. Addressing the risks of nanomaterials under united states and European union regulatory frameworks for chemicals. Assessing Nanoparticle Risks to Human Health (Second Edition): Elsevier; 2016. p. 179–254.
  • Provenzale J, Mohs A. Nanotechnology in neurology: current status and future possibilities. US Neurol. 2010;06:12–17.
  • Boulaiz H, Alvarez PJ, Ramirez A, et al. Nanomedicine: application areas and development prospects. IJMS. 2011;12:3303–3321.
  • Piktel E, Niemirowicz K, Wątek M, et al. Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy. J Nanobiotechnol. 2016;14:39.
  • Bhise K, Sau S, Alsaab H, et al. Nanomedicine for cancer diagnosis and therapy: advancement, success and structure–activity relationship. Ther Deliv. 2017;8:1003–1018.
  • McCarroll J, Teo J, Boyer C, et al. Potential applications of nanotechnology for the diagnosis and treatment of pancreatic cancer. Front Physiol. 2014;5:2
  • Solano-Umaña V, Vega-Baudrit JR, González-Paz R. The new field of the nanomedicine. Int J Appl. 2015;5.
  • Srikanth M, Kessler JA. Nanotechnology – novel therapeutics for CNS disorders. Nat Rev Neurol. 2012;8:307–318.
  • Pelaz B, Alexiou C, Alvarez-Puebla RA, et al. Diverse applications of nanomedicine. ACS Publications; 2017.
  • Ledet G, Mandal TK. Nanomedicine: emerging therapeutics for the 21st century. US Pharm. 2012;37:7–11.
  • Bamrungsap S, Zhao Z, Chen T, et al. Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system. Nanomedicine (Lond). 2012;7:1253–1271.
  • Kessler TL. Treatments for neuropathic pain. Lung Cancer. 2018;15:05.
  • Clark AK, Yip PK, Grist J, et al. Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain. Proc Natl Acad Sci. 2007;104:10655–10660.
  • Zhuang Z-Y, Gerner P, Woolf CJ, et al. ERK is sequentially activated in neurons, microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model. Pain. 2005;114:149–159.
  • Hancock JF, Magee AI, Childs JE, et al. All ras proteins are polyisoprenylated but only some are palmitoylated. Cell. 1989;57:1167–1177.
  • Chen T, Berenson J, Vescio R, et al. Pharmacokinetics and pharmacodynamics of zoledronic acid in cancer patients with bone metastases. J Clin Pharmacol. 2002;42:1228–1236.
  • Caraglia M, Luongo L, Salzano G, et al. Stealth liposomes encapsulating zoledronic acid: a new opportunity to treat neuropathic pain. Mol Pharmaceutics. 2013;10:1111–1118.
  • Lalani J, Patil S, Kolate A, et al. Protein-functionalized PLGA nanoparticles of lamotrigine for neuropathic pain management. AAPS PharmSciTech. 2015;16:413–427.
  • Marazziti D, Rotondo A, Ambrogi F, et al. Analgesia by nefopam: does it act through serotonin? Drugs under Exp Clin Res. 1990;17:259–261.
  • Fuller RW, Snoddy HD. Evaluation of nefopam as a monoamine uptake inhibitor in vivo in mice. Neuropharmacology. 1993;32:995–999.
  • Esposito E, Romandini S, Merlo-Pich E, et al. Evidence of the involvement of dopamine in the analgesic effect of nefopam. Eur J Pharmacol. 1986;128:157–164.
  • Sukhbir S, Yashpal S, Sandeep A. Development and statistical optimization of nefopam hydrochloride loaded nanospheres for neuropathic pain using Box–Behnken design. Saudi Pharmaceutical J. 2016;24:588–599.
  • Agarwal N, Pacher P, Tegeder I, et al. Cannabinoids mediate analgesia largely via peripheral type 1 cannabinoid receptors in nociceptors. Nat Neurosci. 2007;10:870.
  • Bridges D, Ahmad K, Rice AS. The synthetic cannabinoid WIN55, 212‐2 attenuates hyperalgesia and allodynia in a rat model of neuropathic pain. Br J Pharmacol. 2001;133:586–594.
  • Sain NM, Liang A, Kane SA, et al. Antinociceptive effects of the non-selective cannabinoid receptor agonist CP 55,940 are absent in CB1(-/-) and not CB2(-/-) mice in models of acute and persistent pain. Neuropharmacology. 2009;57:235–241.
  • Eissens A, Van Drooge D, Hinrichs W, et al. Stabilized natural cannabinoid formulation. Google Patents; 2003.
  • Gardin A, Kucher K, Kiese B, et al. CRA13, a Novel Cannabinoid agonist: first in human pharmacokinetics and safety. Drug Metab Dispos. 2009;37:827–833.
  • Martín-Banderas L, Álvarez-Fuentes J, Durán-Lobato M, et al. Cannabinoid derivate-loaded PLGA nanocarriers for oral administration: formulation, characterization, and cytotoxicity studies. Int J Nanomed. 2012;7:5793.
  • Zhang L, Wang S, Zhang M, et al. Nanocarriers for oral drug delivery. J Drug Target. 2013;21:515–527.
  • Durán-Lobato M, Martín-Banderas L, Gonçalves LM, et al. Comparative study of chitosan-and PEG-coated lipid and PLGA nanoparticles as oral delivery systems for cannabinoids. J Nanoparticle Res. 2015;17:61.
  • Clapper JR, Moreno-Sanz G, Russo R, et al. Anandamide suppresses pain initiation through a peripheral endocannabinoid mechanism. Nat Neurosci. 2010;13:1265–1270.
  • Yu XH, Cao CQ, Martino G, et al. A peripherally restricted cannabinoid receptor agonist produces robust anti-nociceptive effects in rodent models of inflammatory and neuropathic pain. PAIN®. 2010;151:337–344.
  • Linsell O, Brownjohn PW, Nehoff H, et al. Effect of styrene maleic acid WIN55,212-2 micelles on neuropathic pain in a rat model. J Drug Target. 2015;23:353–359.
  • Batrakova EV, Bronich TK, Vetro JA, et al. Polymer micelles as drug carriers. Nanoparticulates Drug Carr. 2006;57–93.
  • Xie W, Strong JA, Zhang J-M. Early blockade of injured primary sensory afferents reduces glial cell activation in two rat neuropathic pain models. Neurosci. 2009;160:847–857.
  • Suter MR, Papaloïzos M, Berde CB, et al. Development of neuropathic pain in the rat spared nerve injury model is not prevented by a peripheral nerve block. Anesthesiology. 2003;99:1402–1408.
  • Nejati-Koshki K, Mortazavi Y, Pilehvar-Soltanahmadi Y, et al. An update on application of nanotechnology and stem cells in spinal cord injury regeneration. Biomed Pharmacother. 2017;90:85–92.
  • Shankarappa SA, Kohane DS. Controlled-release systems in neuropathic pain. Pain Manag. 2013;3:91–93.
  • Santamaria CM, Woodruff A, Yang R, et al. Drug delivery systems for prolonged duration local anesthesia. Mater. Today. 2017;20:22–31.
  • de Paula E, Cereda CM, Fraceto LF, et al. Micro and nanosystems for delivering local anesthetics. Expert Opin Drug Deliv. 2012;9:1505–1524.
  • McAlvin JB, Reznor G, Shankarappa SA, et al. Local toxicity from local anesthetic polymeric microparticles. Anesth Analg. 2013;116:794
  • Viscusi ER, Sinatra R, Onel E, et al. The safety of liposome bupivacaine, a novel local analgesic formulation. Clin J Pain. 2014;30:102–110.
  • Dudala TB, Yalavarthi PR, Vadlamudi HC, et al. A perspective overview on lipospheres as lipid carrier systems. Int J Pharma Investig. 2014;4:149.
  • Loftsson T, Jarho P, Masson M, et al. Cyclodextrins in drug delivery. Expert Opin Drug Deliv. 2005;2:335–351.
  • Ulery BD, Nair LS, Laurencin CT. Biomedical applications of biodegradable polymers. J Polym Sci B Polym Phys. 2011;49:832–864.
  • Hoare TR, Kohane DS. Hydrogels in drug delivery: progress and challenges. Polymer. 2008;49:1993–2007.
  • Timko BP, Dvir T, Kohane DS. Remotely triggerable drug delivery systems. Adv Mater. 2010;22:4925–4943.
  • Garcia X, Escribano E, Domenech J, et al. In vitro characterization and in vivo analgesic and anti-allodynic activity of PLGA-bupivacaine nanoparticles. J Nanopart Res. 2011;13:2213–2223.
  • Hua S, Cabot PJ. Targeted nanoparticles that mimic immune cells in pain control inducing analgesic and anti-inflammatory actions: a potential novel treatment of acute and chronic pain conditions. Pain Physician. 2013;16:E199–E216.
  • Gilron I, Jensen TS, Dickenson AH. Combination pharmacotherapy for management of chronic pain: from bench to bedside. Lancet Neurol. 2013;12:1084–1095.
  • Chakravarthy KV, Boehm FJ, Christo PJ. Nanotechnology: a promising new paradigm for the control of pain. Pain Med. 2018;19:232–243.
  • George A, Marziniak M, Schäfers M, et al. Thalidomide treatment in chronic constrictive neuropathy decreases endoneurial tumor necrosis factor-α, increases interleukin-10 and has long-term effects on spinal cord dorsal horn met-enkephalin. Pain. 2000;88:267–275.
  • Mao J, Chen LL. Systemic lidocaine for neuropathic pain relief. Pain. 2000;87:7–17.
  • Song T, Gu K, Wang W, et al. Prolonged suppression of neuropathic pain by sequential delivery of lidocaine and thalidomide drugs using PEGylated graphene oxide. J Pharmaceutical Sci. 2015;104:3851–3860.
  • Matsushita Y, Ueda H. Curcumin blocks chronic morphine analgesic tolerance and brain-derived neurotrophic factor upregulation. Neuroreport. 2009;20:63–68.
  • Anand P, Kunnumakkara AB, Newman RA, et al. Bioavailability of curcumin: problems and promises. Mol Pharmaceutics. 2007;4:807–818.
  • Shen H, Hu X, Szymusiak M, et al. Orally administered nanocurcumin to attenuate morphine tolerance: comparison between negatively charged PLGA and partially and fully PEGylated nanoparticles. 2013;10:4546–4551.
  • Wilson B, Lavanya Y, Priyadarshini S, et al. Albumin nanoparticles for the delivery of gabapentin: preparation, characterization and pharmacodynamic studies. Int J Pharmaceu. 2014;473:73–79.
  • Senthilnathan B, Maheswaran A, Gopalasatheeskumar K, et al. Formulation and evaluation of pregabalin loaded eudragit S100 nanoparticles. Int J Eng Tech Sci. 2016;6:64–70.
  • São Pedro A, Fernandes R, Flora Villarreal C, et al. Opioid-based micro and nanoparticulate formulations: alternative approach on pain management. J Microencapsulation. 2016;33:18–29.
  • Martín-Banderas L, Munoz-Rubio I, Álvarez-Fuentes J, et al. Engineering of Δ9-tetrahydrocannabinol delivery systems based on surface modified-PLGA nanoplatforms. Colloids Surf B Biointerfaces. 2014;123:114–122.
  • Lalani J, Rathi M, Lalan M, et al. Protein functionalized tramadol-loaded PLGA nanoparticles: preparation, optimization, stability and pharmacodynamic studies. Drug Develop Ind Pharm. 2013;39:854–864.
  • Hoekman JD, Srivastava P, Ho RJ. Aerosol‐stable peptide‐coated liposome nanoparticles: a proof‐of‐concept study with opioid fentanyl in enhancing analgesic effects and reducing plasma drug exposure. J Pharmaceutical Sci. 2014;103:2231–2239.
  • Tosi G, Costantino L, Rivasi F, et al. Targeting the central nervous system: in vivo experiments with peptide-derivatized nanoparticles loaded with Loperamide and Rhodamine-123. J Control Release. 2007;122:1–9.
  • Anand P, O’Neil A, Lin E, et al. Tailored delivery of analgesic ziconotide across a blood brain barrier model using viral nanocontainers. Sci Rep. 2015;5:12497.
  • Baskaran M, Baskaran P, Arulsamy N, et al. Preparation and evaluation of PLGA-coated capsaicin magnetic nanoparticles. Pharm Res. 2017;34:1255–1263.
  • Astruc‐Diaz F, Mcdaniel SW, et al. In vivo efficacy of enabling formulations based on hydroxypropyl‐β‐cyclodextrins, micellar preparation, and liposomes for the lipophilic cannabinoid CB2 agonist, MDA7. J Pharmaceu Sci. 2013;102:352–364.
  • Liu Q, Jin L, Mahon BH, et al. A novel treatment of neuroinflammation against low back pain by soluble fullerol nanoparticles. Spine. 2013;38:1443.
  • Franchi S, Castelli M, Amodeo G, et al. Adult stem cell as new advanced therapy for experimental neuropathic pain treatment. BioMed Res Int. 2014;2014:1.
  • Nandoe Tewarie RS, Hurtado A, Bartels RH, et al. Stem cell-based therapies for spinal cord injury. J Spinal Cord Med. 2009;32:105–114.
  • Bossio C, Mastrangelo R, Morini R, et al. A simple method to generate adipose stem cell-derived neurons for screening purposes. J Mol Neurosci. 2013;51:274–281.
  • Franchi S, Valsecchi AE, Borsani E, et al. Intravenous neural stem cells abolish nociceptive hypersensitivity and trigger nerve regeneration in experimental neuropathy. PAIN®. 2012;153:850–861.
  • Luo Y, Zou Y, Yang L, et al. Transplantation of NSCs with OECs alleviates neuropathic pain associated with NGF downregulation in rats following spinal cord injury. Neurosci Lett. 2013;549:103–108.
  • Klass M, Gavrikov V, Drury D, et al. Intravenous mononuclear marrow cells reverse neuropathic pain from experimental mononeuropathy. Anesth Analg. 2007;104:944–948.
  • Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–147.
  • Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mboc. 2002;13:4279–4295.
  • Salazar DL, Uchida N, Hamers FP, et al. Human neural stem cells differentiate and promote locomotor recovery in an early chronic spinal cord injury NOD-scid mouse model. PLoS One. 2010;5:e12272.
  • Sacerdote P, Niada S, Franchi S, et al. Systemic administration of human adipose-derived stem cells reverts nociceptive hypersensitivity in an experimental model of neuropathy. Stem Cells Develop. 2013;22:1252–1263.
  • De Girolamo L, Sartori M, Arrigoni E, et al. Human adipose-derived stem cells as future tools in tissue regeneration: osteogenic differentiation and cell-scaffold interaction. Int J Artif Organs. 2008;31:467–479.
  • Choi JI, Cho HT, Jee MK, et al. Core-shell nanoparticle controlled hATSCs neurogenesis for neuropathic pain therapy. Biomaterials. 2013;34:4956–4970.
  • Sloane E, Langer S, Jekich J, et al. Resolution of neuropathic pain by intrathecal (IT) gene therapy to induce interleukin-10 (IL-10): initial exploration of mechanisms. Sydney, Australia: International Association for the Study of Pain; 2005.
  • Goins WF, Cohen JB, Glorioso JC. Gene therapy for the treatment of chronic peripheral nervous system pain. Neurobiol Dis. 2012;48:255–270.
  • Shi L, Tang G, Gao S, et al. Repeated intrathecal administration of plasmid DNA complexed with polyethylene glycol-grafted polyethylenimine led to prolonged transgene expression in the spinal cord. Gene Ther. 2003;10:1179.
  • Belyanskaya L, Weigel S, Hirsch C, et al. Effects of carbon nanotubes on primary neurons and glial cells. Neurotoxicology. 2009;30:702–711.
  • Chen KH, Wu CH, Tseng CC, et al. Intrathecal coelectrotransfer of a tetracycline‐inducible, three‐plasmid‐based system to achieve tightly regulated antinociceptive gene therapy for mononeuropathic rats. J Gene Med. 2008;10:208–216.
  • Chuang Y-C, Chou A-K, Wu P-C, et al. Gene therapy for bladder pain with gene gun particle encoding pro-opiomelanocortin cDNA. J Urol. 2003;170:2044–2048.
  • Yamashita M, Yamauchi K, Suzuki M, et al. Transfection of rat cells with proopiomeranocortin gene, precursor of endogenous endorphin, using radial shock waves suppresses inflammatory pain. Spine. 2009;34:2270–2277.
  • Lin C-R, Chen K-H, Yang C-H, et al. Sonoporation-mediated gene transfer into adult rat dorsal root ganglion cells. J Biomed Sci. 2010;17:44.
  • Hao S, Mata M, Glorioso J, et al. Gene transfer to interfere with TNFalpha signaling in neuropathic pain. Gene Ther. 2007;14:1010.
  • Gerard E, Spengler RN, Bonoiu AC, et al. Chronic constriction injury-induced nociception is relieved by nanomedicine-mediated decrease of rat hippocampal tumor necrosis factor. Pain. 2015;156:1320–1333.
  • Milligan ED, Sloane EM, Langer SJ, et al. Controlling neuropathic pain by adeno-associated virus driven production of the anti-inflammatory cytokine, interleukin-10. Mol Pain. 2005;1:9.
  • Milligan ED, Langer SJ, Sloane EM, et al. Controlling pathological pain by adenovirally driven spinal production of the anti‐inflammatory cytokine, interleukin‐10. Eur J Neurosci. 2005;21:2136–2148.
  • Zhou Z, Peng X, Hao S, et al. HSV-mediated transfer of interleukin-10 reduces inflammatory pain through modulation of membrane tumor necrosis factor α in spinal cord microglia. Gene Ther. 2008;15:183.
  • Soderquist RG, Sloane EM, Loram LC, et al. Release of plasmid DNA-encoding IL-10 from PLGA microparticles facilitates long-term reversal of neuropathic pain following a single intrathecal administration. Pharm Res. 2010;27:841–854.
  • Andreu V, Arruebo M. Current progress and challenges of nanoparticle-based therapeutics in pain management. J Control Release. 2018;269:189–213.
  • Shcharbina N, Shcharbin D, Bryszewska M. Nanomaterials in Stroke treatment: perspectives. Stroke. 2013;44:2351–2355.
  • Sarmah D, Saraf J, Kaur H, et al. Stroke management: an emerging role of nanotechnology. Micromachines. 2017;8:262.
  • Oberdörster G, Maynard A, Donaldson K, et al. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Particle Fibre Toxicol. 2005;2:8.
  • Geiser M, Rothen-Rutishauser B, Kapp N, et al. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect. 2005;113:1555.
  • Huk A, Izak-Nau E, El Yamani N, et al. Impact of nanosilver on various DNA lesions and HPRT gene mutations–effects of charge and surface coating. Particle Fibre Toxicol. 2015;12:25.
  • Xu L, Liang H-W, Yang Y, et al. Stability and reactivity: positive and negative aspects for nanoparticle processing. Chem Rev. 2018;118:3209–3250.
  • Sanhai WR, Sakamoto JH, Canady R, et al. Seven challenges for nanomedicine. Nature Nanotech. 2008;3:242.
  • Wicki A, Witzigmann D, Balasubramanian V, et al. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release. 2015;200:138–157.
  • Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small. 2008;4:26–49.
  • Arnstein PM. The future of topical analgesics. Postgrad Med. 2013;125:34–41.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.