267
Views
13
CrossRef citations to date
0
Altmetric
Review Articles

Polymeric nanodroplets: an emerging trend in gaseous delivery system

&
Pages 1035-1045 | Received 15 Nov 2018, Accepted 24 Feb 2019, Published online: 20 Mar 2019

References

  • Rapoport NY, Kennedy AM, Shea JE, et al. Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles. J Control Release. 2009;138:268–276.
  • Liu R, Rallo R, George S, et al. Classification NanoSAR development for cytotoxicity of metal oxide nanoparticles. Small. 2011;7:1118–1126.
  • Churchman AH, Mico V, De Pablo JG, et al. Combined flow-focus and self-assembly routes for the formation of lipid stabilized oil-shelled microbubbles. Microsyst Nanoeng. 2018;4:1–8.
  • Pancholi K, Stride E, Edirisinghe M. Dynamics of bubble formation in highly viscous liquids. Langmuir. 2008;24:4388–4393.
  • Gultekinoglu M, Jiang X, Bayram C, et al. Honeycomb-like PLGA-b-PEG structure creation with T-junction micro droplets. Langmuir. 2018;34:7989–7997.
  • Zweers ML, Grijpma DW, Engbers GH, et al. The preparation of monodisperse biodegradable polyester nanoparticles with a controlled size. J Biomed Mater Res. 2003;66:559–566.
  • Moyer L, Timbie K, Sheeran P, et al. Direct nanodroplet and microbubble comparison for high intensity focused ultrasound ablation enhancement and safety. J Ther Ultrasound. 2015;3:O67.
  • Mathieu D, Mani R. A review of the clinical significance of tissue hypoxia measurements in lower extremity wound management. Int J Low Extrem Wounds. 2007;6:273–283.
  • Lee JY, Carugo D, Crake C, et al. Nanoparticle‐loaded protein–polymer nanodroplets for improved stability and conversion efficiency in ultrasound imaging and drug delivery. Adv Mater. 2015;27:484–492.
  • Tolman RC. The effect of droplet size on surface tension. J Chem Phys. 1949;17:333–337.
  • Isaiev M, Burian S, Bulavin L, et al. Gibbs adsorption impact on a nanodroplet shape: modification of Young–Laplace equation. J Phys Chem B. 2018;122:3176–3183.
  • Zhang J, Borg MK, Sefiane K, et al. Wetting and evaporation of salt-water nanodroplets: a molecular dynamics investigation. Phys Rev. 2015;92:1–11.
  • Li C, Huang J, Li Z. A relation for nanodroplet diffusion on smooth surfaces. Sci Rep. 2016;6:1–8.
  • Factorovich MH, Molinero V, Scherlis DA. Vapor pressure of water nanodroplets. J Am Chem Soc. 2014;136:4508–4514.
  • Lohse D, Zhang X. Surface nanobubbles and nanodroplets. Rev Mod Phys. 2015;87:981–1035.
  • Banche G, Prato M, Magnetto C, et al. Antimicrobial chitosan nanodroplets: new insights for ultrasound-mediated adjuvant treatment of skin infection. Future Microbiol. 2015;10:929–939.
  • Magnetto C, Prato M, Khadjavi A, et al. Ultrasound-activated decafluoropentane-cored and chitosan-shelled nanodroplets for oxygen delivery to hypoxic cutaneous tissues. RSC Adv. 2014;4:38433–38441.
  • Shende PK, Desai D, Gaud RS. Role of solid-gas interface of nanobubbles for therapeutic applications. Crit Rev Ther Drug Carrier Syst. 2018;35:469–494.
  • Zhang X, Lu Z, Tan H, et al. Formation of surface nanodroplets under controlled flow conditions. Proc Natl Acad Sci USA. 2015;112:9253–9257.
  • Budhian A, Siegel SJ, Winey KI. Haloperidol-loaded PLGA nanoparticles: systematic study of particle size and drug content. Int J Pharm. 2007;336:367–375.
  • Du L, Jin Y, Zhou W, et al. Ultrasound-triggered drug release and enhanced anticancer effect of doxorubicin-loaded poly (D, L-lactide-co-glycolide)-methoxy-poly (ethylene glycol) nanodroplets. Ultrasound Med Biol. 2011;37:1252–1258.
  • Niwa T, Takeuchi H, Hino T, et al. In vitro drug release behavior of D, L‐lactide/glycolide copolymer (PLGA) nanospheres with nafarelin acetate prepared by a novel spontaneous emulsification solvent diffusion method. J Pharm Sci. 1994;83:727–732.
  • Yao S, Liu H, Yu S, et al. Drug-nanoencapsulated PLGA microspheres prepared by emulsion electrospray with controlled release behavior. Regen Biomater. 2016;3:309–317.
  • Wischke C, Schwendeman SP. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. Int J Pharm. 2008;364:298–327.
  • Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers. 2011;3:1377–1397.
  • Jian J, Liu C, Gong Y, et al. India ink incorporated multifunctional phase-transition nanodroplets for photoacoustic/ultrasound dual-modality imaging and photoacoustic effect based tumor therapy. Theranostics. 2014;4:1026–1038.
  • Todo MT, Park SD, Takayama T, et al. Fracture micromechanisms of bioabsorbable PLLA/PCL polymer blends. Eng Fract Mech. 2007;74:1872–1883.
  • Takayama T, Todo M. Improvement of impact fracture properties of PLA/PCL polymer blend due to LTI addition. J Mater Sci. 2006;41:4989–4992.
  • Takayama T, Todo M, Tsuji H. Effect of annealing on the mechanical properties of PLA/PCL and PLA/PCL/LTI polymer blends. J Mech Behav Biomed Mater. 2011;4:255–260.
  • Rapoport N, Nam KH, Gupta R, et al. Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions. J Control Release. 2011;153:4–15.
  • Ji G, Yang J, Chen J. Preparation of novel curcumin-loaded multifunctional nanodroplets for combining ultrasonic development and targeted chemotherapy. Int J Pharm. 2014;466:314–320.
  • Kumar MN. A review of chitin and chitosan applications. React Funct Polym. 2000;46:1–27.
  • Kumar MR, Muzzarelli R, Muzzarelli C, et al. Chitosan chemistry and pharmaceutical perspectives. Chem Rev. 2004;104:6017–6084.
  • Khor E, Lim LY. Implantable applications of chitin and chitosan. Biomaterials. 2003;24:2339–2349.
  • Baghbani F, Moztarzadeh F, Mohandesi JA, et al. Formulation design, preparation and characterization of multifunctional alginate stabilized nanodroplets. Int J Biol Macromol. 2016;89:550–558.
  • Madihally SV, Matthew HW. Porous chitosan scaffolds for tissue engineering. Biomaterials. 1999;20:1133–1142.
  • Kulkarni RK, Pani KC, Neuman C, et al. Polylactic acid for surgical implants. Arch Surg. 1966;93(5):839–843.
  • Pandey SK, Patel DK, Thakur R, et al. Anti-cancer evaluation of quercetin embedded PLA nanoparticles synthesized by emulsified nanoprecipitation. Int J Biol Macromol. 2015;75:521–529.
  • Wei Q, Wei W, Lai B, et al. Uniform-sized PLA nanoparticles: preparation by premix membrane emulsification. Int J Pharm. 2008;359:294–297.
  • Tabata Y, Ikada Y. Protein release from gelatin matrices. Adv Drug Deliv Rev. 1998;31:287–301.
  • Young S, Wong M, Tabata Y, et al. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J Control Release. 2005;109:256–274.
  • Coester CJ, Langer K, Von Briesen H, Kreuter J. Gelatin nanoparticles by two step desolvation a new preparation method, surface modifications and cell uptake. J Microencapsul. 2000;17:187–193.
  • Kaul G, Amiji M. Long-circulating poly (ethylene glycol)-modified gelatin nanoparticles for intracellular delivery. Pharm Res. 2002;19:1061–1067.
  • Dhar S, Gu FX, Langer R, et al. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt (IV) prodrug-PLGA–PEG nanoparticles. Proc Natl Acad Sci. 2008;105:17356–17361.
  • Cheng J, Teply BA, Sherifi I, et al. Formulation of functionalized PLGA–PEG nanoparticles for in vivo targeted drug delivery. Biomaterials. 2007;28:869–876.
  • Tobio MJ, Gref R, Sanchez A, et al. Stealth PLA-PEG nanoparticles as protein carriers for nasal administration. Pharm Res. 1998;15:270–275.
  • Ma A, Xu J, Zhang X, et al. Interfacial nanodroplets guided construction of hierarchical Au, Au-Pt, and Au-Pd particles as excellent catalysts. Sci Rep. 2014;4:4849.
  • Bourouina N, Husson J, Hivroz C, et al. Biomimetic droplets for artificial engagement of living cell surface receptors: the specific case of the T-cell. Langmuir. 2012;28:6106–6113.
  • Thomson JJ. Conduction of electricity through gases. Seaside (OR): Watchmaker Publishing; 2005.
  • Adachi M, Kinoshita T. Generation of nanodroplets and its applications. Nanodroplets. Vol. 18. New York (NY): Springer; 2013. p. 1–24.
  • Adachi M, Tsukui S, Okuyama K. Nanoparticle synthesis by ionizing source gas in chemical vapor deposition. Jpn J Appl Phys. 2003;42:L77–L79.
  • Zhong G, Zhu L, Fong H. Nanodroplet formations in electrospun fibers of immiscible polymer blends and their effects on fractionated crystallization. Nanodroplets. Vol. 18. New York (NY): Springer; 2013. p. 25–50.
  • Heseltine PL, Ahmed J, Edirisinghe M. Developments in pressurized gyration for the mass production of polymeric fibers. Macromol Mater Eng. 2018;303:1800218.
  • Barkay Z. Dynamic study of nanodroplet nucleation and growth using transmitted electrons in ESEM. Nanodroplets. Vol. 18. New York (NY): Springer; 2013. p. 51–72.
  • Roper DK. Self-assembly of nanodroplets in nanocomposite materials in nanodroplets science and technology. Nanodroplets. Vol. 18. New York (NY): Springer; 2013. p. 73–97.
  • Carçabal P, Schmied R, Lehmann KK, et al. Helium nanodroplet isolation spectroscopy of perylene and its complexes with oxygen. J Chem Phys. 2004;120:6792–6793.
  • Yang L, Cheng J, Chen Y, et al. Phase-transition nanodroplets for real-time photoacoustic/ultrasound dual-modality imaging and photothermal therapy of sentinel lymph node in breast cancer. Sci Rep. 2017;7:45213.
  • Sharma S, Shukla P, Misra A, et al. Interfacial and colloidal properties of emulsified systems: pharmaceutical and biological perspective. Colloid and interface science in pharmaceutical research and development. Amsterdam, Netherlands: Elsevier; 2014. p. 149–172.
  • Li B, Lin L, Lin H, et al. Photosensitized singlet oxygen generation and detection: recent advances and future perspectives in cancer photodynamic therapy. J Biophoton. 2016;9:1314–1325.
  • Dietz I, Jerchel S, Szaszak M, et al. When oxygen runs short: the microenvironment drives host–pathogen interactions. Microbes Infect. 2012;14:311–316.
  • Zbytek B, Peacock DL, Seagroves TN, et al. Putative role of HIF transcriptional activity in melanocytes and melanoma biology. Dermatoendocrinol. 2013;5:239–251.
  • Wong VW, Gurtner GC, Longaker MT. Wound healing: a paradigm for regeneration. Mayo Clin Proc. 2013;88:1022–1031.
  • Prato M, Magnetto C, Jose J, et al. 2H, 3H-decafluoropentane-based nanodroplets: new perspectives for oxygen delivery to hypoxic cutaneous tissues. PLoS One. 2015;10:1–20.
  • Shirai H, Kinoshita T, Adachi M. Patterning and formation of SiO2 nanoparticles on a substrate by electrically attracting of cluster ions. Jpn J Appl Phys. 2009;48:070216.
  • Shirai H, Kinoshita T, Adachi M. Synthesis of cobalt nanoparticle and fabrication of magnetoresistance devices by ion-assisted aerosol generation method. Aerosol Sci Technol. 2011;45:1240–1244.
  • Binyamin O, Larush L, Frid K, et al. Treatment of a multiple sclerosis animal model by a novel nanodrop formulation of a natural antioxidant. Int J Nanomed. 2015;10:7165–7174.
  • Baghbani F, Chegeni M, Moztarzadeh F, et al. Ultrasonic nanotherapy of breast cancer using novel ultrasound-responsive alginate-shelled perfluorohexane nanodroplets: in vitro and in vivo evaluation. Mater Sci Eng C. 2017;77:698–707.
  • Khadjavi A, Stura I, Prato M, et al. ‘In vitro, ‘in vivo’ and ‘in silico’ investigation of the anticancer effectiveness of oxygen-loaded chitosan-shelled nanodroplets as potential drug vector. Pharm Res. 2018;35:75.
  • Mückter H. What is toxicology and how does toxicity occur? Best Pract Res Clin Anaesthesiol. 2003;17:5–27.
  • Gupta R, Shea J, Scaife C, et al. Polymeric micelles and nanoemulsions as drug carriers: therapeutic efficacy, toxicity, and drug resistance. J Control Release. 2015;212:70–77.
  • Gulino GR, Magnetto C, Khadjavi A, et al. Oxygen-loaded nanodroplets effectively abrogate hypoxia dysregulating effects on secretion of MMP-9 and TIMP-1 by human monocytes. Mediators Inflamm. 2015;2015:1–11.
  • Khadjavi A, Magnetto C, Panariti A, et al. Chitosan-shelled oxygen-loaded nanodroplets abrogate hypoxia dysregulation of human keratinocyte gelatinases and inhibitors: new insights for chronic wound healing. Toxicol Appl Pharmacol. 2015;286:198–206.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.